采用固态电解质代替有机电解液的全固态电池具有高能量密度和高安全性等优点,为下一代能量存储设备提供了一种很有发展前途的解决方案。然而,大多数固态电解质和电极活性物质间都存在严重的界面问题,制约固态电池的实际应用;解决固态电池中的固-固界面问题,提升固态电池电化学性能是目前的研究热点。本文详细总结了固态电池中的界面挑战、改善策略以及针对界面问题的表征方法,并展望了固态电池今后发展中的关键方向和趋势。
二维材料因为其优异且可调的各种物理化学性质自被发现以来就引起了科研工作者的极大关注。其电学、光学、量子、催化等方面的一些独特性质使其迅速成为一类极其重要的材料体系。二维材料层间弱结合的性质为利用范德华间隙来调控体系的电子结构从而进一步优化材料性能创造了条件。客体原子的引入可以显著改变原有材料的层间间距,改变层间的耦合强度。客体与宿主原子的相互作用也可能改变原始材料的电子结构,从而影响材料的多方面性能,甚至带来新的性质。以锂离子电池为代表的层间存储也是二维范德华间隙在能源存储方面的重要应用,一直受到许多科研工作者的关注。在本综述中,我们从利用插层法改变层间距从而改变层间耦合,引入客体物质与宿主原子相互作用从而改变原材料的物理化学性质或引入新性质和层间储能四个方面系统化阐述了二维材料范德华间隙的各种调控方法及其对合成材料的物理、化学性能的巨大影响,并展望了二维范德华间隙进一步开发利用的方向。
锂离子电池在电子产品和电动汽车等领域已得到广泛应用,同时具有更高比能量的锂离子电池和锂金属电池也在不断研发中。电极界面的研究在推动电池的研发和产业化过程中发挥重要作用,因为电池在首次充放电过程中电解液组分在电极/电解质界面上发生氧化/还原反应并形成离子导通、电子绝缘性质的界面膜,界面膜对于维持电极结构的完整性、保障锂离子快速迁移和防止电解液持续分解十分关键,因此其稳定性与电池的循环性能和使用寿命密切相关。本文综述了固体电解质界面(SEI)的研究进展,首先介绍了SEI在初次充放电阶段对电位的依赖性,讨论SEI的形成机理,具体分析了影响SEI形成的两个关键因素,即电极表面的离子特性吸附和电解液体相的溶剂化组成和结构;其次,梳理总结了界面的结构与化学组成研究进展,及锂离子在界面中可能的传导机制;此外还简要概述了影响界面膜的因素和调控界面膜的策略;最后对SEI在未来的研究方向进行了展望。
作为一种高能量密度储能器件,锂离子电池不仅已经广泛应用于消费电子领域(如笔记本电脑、智能手机),而且也适合用于电动车中的动力电池。正极是锂电池最为重要的组成部分。在正极材料的研究中,当电子在空间上局域分布并与晶格耦合将形成极化子,极化子现象近些年逐渐引起人们更多关注,主要是因为其减弱电子导电性,不利于电子传导,是磷酸铁锂等正极材料电子导电性差的根本原因。极化子是一种晶格畸变束缚电子作整体运动的晶体缺陷。开展极化子现象的相关机理研究,将为设计高导电性正极材料提供理论指导,对锂离子电池电化学性能的进一步提升有着重要意义。基于第一性原理的理论计算方法已成为研究正极材料中极化子的重要研究手段,能够判断体系是否有极化子出现以及分析极化子的出现对正极材料的物理化学性能影响。本文主要从理论计算的角度出发,首先介绍了极化子的基本物理概念,其次结合我们的相关研究综述了极化子的理论计算判别方法、极化子对常见类型正极材料导电性能的影响与调控和当前研究方法的一些理论难题,最后从基础理论和实际应用两个角度对未来正极材料中的极化子研究进行展望。
锂离子电池在便携式电子设备、电动汽车等领域得到了广泛应用,随着对电池能量密度需求的日益增加,高比能、高稳定正极材料的开发成为相关研究的重点和难点。而正极材料比能量的提升又同时伴随着其自身结构稳定性和循环稳定性的挑战,使得锂离子电池的稳定性、安全性成为制约其应用的关键挑战。本文以高比能正极材料为研究对象,对影响正极材料结构稳定性、电化学稳定性等一系列因素进行介绍和分析,再从目前改善材料结构稳定性的有效策略入手,对表面限域掺杂这一特殊稳定策略的实现途径、稳定机制进行了总结和分析,并结合现有不同表面修饰方法进行分析和评述,对高比能正极稳定性提升的可能策略及方向进行了展望。
开发高效催化剂是促进包括电能源、碳循环等洁净新能源技术发展的关键。这些新型物质能源转换过程往往涉及光子、电子、质子等量子尺度的粒子转换,而常规纳米尺度催化剂调控策略已略显困难。原子分子尺度的限域空间带来的强相互作用、强分子碰撞,一方面增加了反应几率,另一方面显著影响了内部分子/原子的电子结构。更为重要的是,限域空间赋予了内部物质不同于开放体系下的特性。这些限域特性在调控催化剂上展现出巨大优势。本文从限域角度出发,综述利用原子、分子尺度限域特性对电催化剂分子构型、配位结构、电荷转移填充、介观调控、催化剂表面能量场的调控机制与方法,以及在燃料电池、物质能源转换方面的应用和未来发展方向的展望。
氧化钨WO3-x (0 ≤ x < 1)具有丰富的氧化态、亚化学计量比晶相以及可逆的光致/电致变色特性,纳米线具有高比表面积和准一维单晶载流子传输通道,WO3-x纳米线结合了上述两者的优异特性,在智能玻璃、能源转换与存储器件和气体传感器等领域有广阔的应用前景。本文从WO3-x的基本性质出发,分析了液相法和气相法(气-液-固、气-固、热氧化)纳米线生长的机制及特点。其中,热氧化法无需催化剂,有望解决纳米线应用的器件化瓶颈,在< 500 ℃下即可实现纳米线尺寸与生长位置的可控生长,实现桥连纳米线器件的高效、原位集成。随后,本文综述了桥连WO3-x纳米线器件在NOx等气体分子检测中的应用进展,梳理了桥连WO3-x纳米线器件在低功耗、高灵敏气体分子检测中的应用,以期为今后高灵敏、低功耗、高集成的氧化物桥连纳米线器件的开发提供参考。
随着社会经济的快速发展,环境污染与能源短缺逐渐成为人们必须面对的热点问题。为实现人类社会的可持续发展,开发环境友好新型清洁能源技术成为二十一世纪的迫切任务。其中,燃料电池被认为是最具发展潜力的新型清洁能源技术之一。拉曼光谱作为一种无损的指纹识别的分子光谱技术,适用于燃料电池材料的研究,尤其是表面增强拉曼光谱技术(SERS)和壳层隔绝表面增强拉曼光谱技术(SHINERS)的发展,为研究燃料电池中反应的痕量中间物种,理解燃料电池实际反应机理提供了一种非常好的原位光谱实验平台,有助于合理设计更高效的催化剂及电极材料。本文主要对拉曼光谱以及SERS和SHINERS在燃料电池领域从电池材料层面和电极表面分子反应层面的应用及其发展前景进行相关讨论。
氢氧燃料电池和电解水是实现氢能循环利用的两个重要系统,其中氢氧化反应(HOR)和析氢反应(HER)因在碱性介质中的反应速率较酸性介质中慢2至3个数量级,成为阻碍碱性燃料电池与电解水制氢发展的主要瓶颈。深入研究碱性介质中的HOR/HER机理,探究碱性与酸性电解质中HOR/HER活性差异之根本原因,对发展低温碱性能源转化器件具有重要意义。据此,本文综述了近年来碱性介质中HOR/HER机理的相关解释与推论,如双功能机理、氢结合能(HBE)理论与电子效应,及各观点间存在的争议;并从理论计算的角度,介绍了目前电化学界面的理论模拟方法及其在HOR/HER研究中的应用。由于电化学反应系统的复杂性,实验与理论计算的结合有助于理清HOR/HER的机理以及pH效应,并有望应用于指导设计高活性、高稳定性的HOR/HER催化剂。
燃料电池以高比能、低污染等独特优势,备受研究者的广泛关注。然而,燃料电池的商业化应用受到电极催化剂的性能、隔膜性能与成本等方面的限制。其中,氧还原反应作为燃料电池阴极的关键电极反应,其催化剂的电催化活性显著影响燃料电池性能和生产成本。因此,氧还原催化剂一直是燃料电池研究重要方向之一。碳基催化剂表现出了类似贵金属的电催化活性,通过优化碳基催化剂的结构及表面电子性质,能够降低氧还原反应过电势,促进氧还原四电子的反应过程,从而实现更高的能量转化效率。针对碳基催化剂在燃料电池中的基础应用,本文综述了近年来杂原子掺杂以及非贵金属与杂原子协同掺杂碳基催化剂的设计思路、电催化性能和潜在的催化机理等最新研究进展,并对未来发展方向进行了总结与展望。
与其他铂基纳米晶体材料相比,铂基纳米框架催化剂因其独特的结构特征和优异的催化性能引起研究者的广泛关注。开放的空间结构设计和组分可控调制不仅提高了铂的原子利用率,而且能在减少铂消耗的同时改善其电催化活性。本文简要综述了铂基纳米框架电催化剂的最新进展。在介绍不同的铂基纳米框架制备和蚀刻策略之后,也对框架晶体的结构演变及其在醇燃料电池中氧还原反应和醇氧化反应的催化应用进行了总结。此外,基于纳米框架材料的类型、合成方法、结构形态和催化性能,对铂基纳米框架的当前存在的挑战和未来的发展前景进行了总结和展望。基于铂基纳米框架材料的改进机制和规模化制备策略,我们相信纳米框架材料将会在醇燃料电池等技术中发挥更大作用。
中高温质子交换膜燃料电池作为一种新型能量转换装置,具有环境友好、能量转换效率高、氢气纯度要求低等特点。催化剂作为电化学反应的核心,其性能极大影响着燃料电池的整体工作效率,目前针对中高温燃料电池催化剂的研究主要集中在电化学反应动力学较慢的阴极氧还原催化剂。磷酸掺杂的聚苯并咪唑(PA-PBI)为常用的高温质子交换膜,由于磷酸与PBI的结合力差,在长时间运行过程中磷酸容易渗透到催化剂层,造成磷酸在铂基催化剂表面的强吸附导致催化剂中毒的问题,并且氧分子在磷酸中溶解度低。基于以上问题,本文综述了铂基催化剂、非铂催化剂和非金属催化剂在中高温质子交换膜燃料电池中的应用现状,重点阐述了表面修饰、合金化、载体效应等策略对催化剂在磷酸电解液中的氧还原反应动力学的影响。最后针对目前中高温质子交换燃料电池催化剂发展方向进行了探讨和展望。
质子交换膜燃料电池(PEMFCs)作为一种清洁、高效的能源转换装置,被认为是未来能源转换的重要技术之一,是取代现有汽车内燃机的重要途径之一。目前,PEMFCs广泛使用铂基电催化剂,电堆组装的技术水平已降低到0.2 g·kW-1。然而,按照汽车行业铂全球用量(约90 t铂,生产9500万辆),大规模应用需要将系统铂用量将至0.01 g·kW-1,挑战巨大。实现铂利用率数量级的提升,当前研究主要集中在开发高活性、高利用率、高稳定的、抗溺水的新型铂基催化剂;开发高透氧率、疏水性新型离聚物,制备超薄质子膜;合理设计高传质性能、高利用率的催化层。本文主要针对上述的问题进行了综述,分析了其催化活性增强的机理,讨论了膜电极组成设计和影响因素。
双极板是燃料电池的重要组成部件,需要满足导电、抗弯强度、耐腐蚀等方面性能的要求。复合石墨双极板具有成本低、耐腐蚀性好、易成型等优势,是双极板的一个重要研究方向。复合石墨双极板的导电功能是由以石墨为代表的导电填料相互连接形成传导网络实现的,抗弯强度及气密等性能则主要依靠树脂固化形成的基体。因此,复合石墨双极板性能不仅受到导电填料以及树脂性能的影响,同时导电填料、树脂固化形成的结构对于极板性能也有着不可忽视的影响。本文总结了导电填料及树脂的性质、改性方法等对于复合石墨极板性能的影响,并分析了分子结构以及制备工艺对于极板结构以及实用性能的影响规律。导电填料与树脂的相容性受到原料表面官能团的影响,并直接影响了导电填料的离散均匀度以及导电填料/树脂的界面性能。通过填料诱导工艺优化导电网络,能够有效提升极板的导电性能。基于对研究现状的总结,本文对复合石墨极板开发的未来发展方向进行了展望。
燃料电池是一种清洁高效的能量转换装置,可将储存在燃料中的化学能直接转化为电能。在过去的几十年中,燃料电池的开发取得了重大进展。聚合物电解质燃料电池,尤其是以质子交换膜燃料电池(PEMFC)为代表,可以实现高效率、高功率密度、快速启动,因而受到了广泛的关注。然而,PEMFC因使用昂贵的Pt基催化剂而导致成本较高,阻碍了其大规模的应用。近年来发展的碱性膜燃料电池(HEMFC)与PEMFC结构相似,但使用可传导氢氧根离子的聚合物电解质,并提供碱性工作环境。HEMFC由于具有使用非Pt电催化剂和较便宜双极板的可能性而备受关注。然而,HEMFC的一个巨大的挑战是阳极氢氧化反应(HOR)相对缓慢的动力学,这使得其需要较高载量的阳极催化剂才能实现较高的电池性能。因此,对于HEMFC而言,阳极催化剂的成本也很高,亟需开发在碱性条件下低成本、高活性和高稳定性的HOR催化剂。在本综述中,我们总结了HOR催化剂的最新研究进展,涉及文献中提出的各种HOR机理和催化剂,并分析了基于阳极催化剂成本的HEMFC性能。我们发现,最新报道的非Pt HOR催化剂可以降低阳极催化剂的成本,到达与PEMFC接近的成本水平。最后,我们对HOR的进一步研究进行了展望。
在燃料电池阴极氧还原反应以及阳极小分子氧化反应中,结构有序的金属间化合物由于具有可控的组成和结构表现出良好的电催化活性和催化稳定性,受到科研工作者的广泛关注。本文基于课题组多年来在有序金属间化合物电催化剂方面的研究情况,综述了贵金属基有序金属间化合物电催化剂的研究现状。重点介绍了结构有序金属间化合物的结构特点、表征方法、可控制备以及其在燃料电池电催化剂中的应用。此外,对这类材料当前存在的问题以及未来发展方向进行了讨论及展望,以期为燃料电池电催化剂的发展开拓新的思路。
质子交换膜燃料电池(PEMFC)可以直接将储存在氢中的化学能无污染地转化为电能,是实现碳减排和碳中和的关键新能源技术。目前的PEMFC技术,尤其是在发生氧还原反应的阴极,还严重依赖铂基贵金属催化剂,导致了燃料电池高昂的成本,限制了其大规模应用。因此,人们对于研究基于低成本非贵金属催化剂的PEMFC展现出了极大的兴趣。自从采用金属-氮-碳结构催化剂作为贵金属催化剂的替代品以来,非铂基PEMFC取得了很多突破,但是当前其在活性和稳定性的表现仍不能令人满意。本文总结了基于金属-氮-碳催化剂的PEMFC性能与活性位点、催化剂结构和催化层结构之间的关系,揭示了催化剂结构对于PEMFC中物质传输的重要作用。另外,为了满足实际需求,本文也总结并讨论了PEMFC可能的失活机理,包括脱金属作用,氮物种的质子化,碳载体腐蚀和孔道水淹等,以及目前发展的可能的解决方案。基于这些认识,本文最后介绍了在提升金属-氮-碳基PEMFC的活性和稳定性方面的最新进展与策略。
高温聚合物电解质膜燃料电池(HT-PEMFC)由于其较高的运行温度(140–200 ℃)而具有较快的电极反应动力学和良好的抗CO等杂质气体毒化能力以及简化水热管理等优势,是PEMFC的重要发展方向之一。HT-PEMFC的核心部件为基于磷酸掺杂聚合物电解质膜(HT-PEM)组装的膜电极(MEA)。在高温膜电极(HT-MEA)中,一方面聚合物电解质膜和催化层中的离子传导极大地依赖于磷酸的含量;而另一方面磷酸分子填充在高分子链周围会引起聚合物膜力学性能的下降,迁移进催化层中的磷酸容易导致阴阳极催化层的“酸淹”以及在铂催化剂表面吸附而降低催化剂活性。因此,研究磷酸在高温聚合物电解质膜电极中的分布状态和迁移过程,对构建高性能和高稳定性的HT-PEMFC至关重要。基于此,本文对近年来HT-MEA中磷酸的分布、动态迁移过程的研究现状进行了梳理分析,对HT-MEA(包括高温聚合物电解质膜和催化层)中磷酸分布和迁移的调节与优化策略研究进展进行了较全面的综述,并对其未来发展趋势进行了评述和展望。
质子交换膜燃料电池(PEMFC)具有高转化效率、高功率密度以及低污染等优点,目前受到广泛关注。燃料电池的性能主要受限于阴极的氧还原反应,其成本也受限于阴极催化剂。目前人们已经设计了许多策略、开发了许多催化剂,特别是铂基合金催化剂,来加快氧还原反应的速率,提高燃料电池性能。然而,由于过渡金属的溶解以及纳米粒子的团聚等问题,氧还原催化剂以及燃料电池的长效稳定性仍然存在问题。如何设计高效、高稳定的燃料电池阴极催化剂,对于进一步推动燃料电池的应用十分关键。针对燃料电池阴极催化剂稳定性的问题,本文综述了近年来提升燃料电池铂基催化剂稳定性的原理、策略与方法,首先我们从热力学和动力学上阐述影响催化剂稳定性的原因及其调控原理。随后,我们将概述一些具有代表性的提升催化剂稳定性的策略和方法。最后,我们对未来发展方向进行了总结与展望。
二维聚合物材料氮化碳纳米片因具有独特的电学特性、化学稳定性,在环境治理、能源转换领域有广阔的应用前景。开发绿色友好、经济高效的g-C3N4纳米片剥离策略和合成方法,是催化、能源、材料领域的热点问题。本文重点介绍了关于二维g-C3N4纳米片的剥离方法与制备策略的研究进展,同时对现有方法进行对比和分析,主要包括热氧化刻蚀、超声辅助剥离、化学法、机械法以及模板法等。文章的最后对g-C3N4纳米片的剥离制备所面临的问题和挑战,进行了讨论,并展望其未来发展方向。
化石燃料的使用已经引起了严重的环境问题,例如空气污染和温室效应。同时,化石燃料作为不可再生能源无法一直满足人们不断的能源需求。因此,开发清洁可再生能源非常重要。氢是一种清洁无污染的可再生能源,可以缓解整个社会的能源压力。地球在一秒钟内接收到的太阳光能为1.7 × 1014 J,远远超过了人类一年的总能源消耗。因此,将太阳能转化为有价值的氢能对于减少对化石燃料的依赖具有重要的意义。自1972年藤岛昭和本多健一首次报道TiO2光催化剂以来,人们发现半导体可以通过电或光驱动水分解产生清洁无污染的氢气。通过这种方式产氢不仅可以替代化石燃料,还可以提供环保的可再生氢能源,受到了人们的广泛关注。光电化学(PEC)水分解可以利用太阳能生产清洁、可持续的氢能。由于光阳极上的析氧反应(OER)缓慢,因此总的能量转换效率仍然很低,限制了PEC水分解的实际应用。助催化剂对于改善光电化学水分解性能是必要的。贵金属氧化物已被证明是最有效的OER催化剂,因为它们在酸性和碱性条件下具有很高的OER活性。然而,这些贵金属氧化物成本高和储量低,极大地限制了它们的实际应用。因此,开发高活性和低成本的OER助催化剂非常重要。迄今为止,对第一周期过渡金属(例如,Fe,Co,Ni和Mn)助催化剂的合成研究比较集中。其中,铁在地球上含量丰富,并且毒性比其他过渡金属低,使其成为良好的助催化剂。另外,铁基化合物具有半导体/金属的特性和独特的电子结构,可以改善材料的电导率和对水的吸附性能。目前,各种具有高催化活性的铁基催化剂已经被设计来提高光电化学的水氧化效率。本文简要概述了羟基氧化铁,铁基层状双氢氧化物和铁基钙钛矿等的结构、合成和应用方面的最新研究进展,并讨论了这些助催化剂在光电化学水氧化的性能。
二维光催化材料具有丰富的表面活性位点、独特的几何结构、可调的电子结构和良好的光催化活性,在环境净化和能源转化等领域具有潜在的应用价值。鉴于此,二维光催化材料的合成方法和性能调控策略得到了快速发展。以往的策略主要集中在形貌和几何结构特征的调节上,实际上并不能完全满足高效稳定的光催化剂的设计需求。通过表面设计构建丰富的活性位点和调整电子结构,可以提高光催化性能及其稳定性。本文从光吸收、电荷分离和活性位点三个方面综述了二维光催化材料的表面设计和电子结构调控策略的研究进展,包括元素掺杂、异质结设计、缺陷构造、单原子修饰、等离子体金属负载等方法,总结了电子结构调控对二维光催化材料净化典型空气污染物反应机理的影响机制。最后,对二维光催化材料研究中存在的问题和挑战进行了分析和展望。
二维石墨相氮化碳(2D g-C3N4)由于其特殊的π-π共轭结构,较窄的禁带宽度(2.7 eV)以及比表面积大、结构稳定、绿色无毒、来源广泛等特点,在光催化领域显示出巨大的应用潜力。然而,传统g-C3N4由于其可见光吸收差、光生载流子复合快、量子效率低等固有缺点导致其光催化性能较差,限制其应用。迄今为止,研究人员已经设计并开发了异质结构建、缺陷工程和形貌调控等多种策略来改善g-C3N4光催化活性。其中,缺陷工程通过调节g-C3N4的表面电子结构和能级结构来提高其光捕获、光生载流子分离-迁移和目标分子吸附/活化能力,从而改善其光催化能力。本文综述了非外源因素诱导(碳空位、氮空位等)以及外源因素诱导缺陷(掺杂和功能化)修饰g-C3N4,调控其光电子及光催化性能的最新研究进展,并介绍了2D g-C3N4在光催化净化大气方面的应用进展。最后,对g-C3N4在光催化领域的后续研究进行了展望。这篇文章的主要目的是为全面、深入地理解缺陷调控g-C3N4光催化性能的机制提供思路,以期更好地指导g-C3N4光催化剂的后续研究及其工商业应用开发。
电催化方法还原二氧化碳制备高附加值化学品,在降低二氧化碳浓度、平衡碳循环和储存可再生途径产生的电能等方面展现较大潜力。通过设计高效电催化剂来降低二氧化碳电催化还原过程所需的过电位并提高产物的选择性和电流密度,对电催化还原二氧化碳的发展和应用具有重要意义。本文总结了金属氧化物基材料作为电催化剂在二氧化碳电还原中的最新研究进展,深入探讨了金属氧化物在催化反应中的作用、稳定性及结构性能关系,并对金属氧化物基材料在二氧化碳电还原中未来的设计和研究方向做出思考。
在现代社会中氨是一种重要的工业原料,广泛应用于化工业、塑料制造,炸药以及染料等行业。由于氨气中不含碳,氢容量大、能量密度高且易于运输,已经被视为一种绿色能源替代品。Haber-Bosch方法在全球合成氨中起着主导作用,但其过程在高温高压条件下进行,且伴随着高能耗和CO2排放的问题。电催化氮还原反应(NRR)有望成为常规条件下低成本且环境无害的替代方法,且具有太阳能、风能和其他可再生能源相同的应用潜力。然而,由于惰性的N≡N键,它需要有效的电催化剂来驱动氮气-氨气的转化。迄今为止,人们一直在努力探索高性能催化剂,以实现高效率和选择性。通常,贵金属催化剂具有较高的NRR效率,但是稀缺性和高成本限制了它们的大规模应用。因此,人们将注意力集中在丰富的过渡金属(TM)催化剂上,该催化剂可以通过空的轨道接受氮气分子的孤对电子,同时提供丰富的d-轨道电子进入氮气的反键轨道。然而,这些催化剂可能释放金属离子,导致环境污染,并且大多数金属电催化剂也可能促进金属与氢成键,从而在电催化反应过程中促进了析氢反应(HER)。近年来,非金属催化剂已经成为一个研究热点。非金属催化剂主要包括碳基催化剂(CBC)以及一些硼基和磷基催化剂。通常,碳基催化剂具有多孔结构和较大的表面积,这有利于暴露更多的活性位点,并为质子和电子的传递提供了丰富的通道。本文总结了近期非金属电催化剂(MFCs)在电化学NRR中的设计和发展状况,包括碳基、硼基和磷基催化剂。此外,大多数非金属化合物的路易斯酸位也可以接受氮气的孤对电子并通过形成非金属和氮成键来吸附氮气分子,从而进一步扩大了它们在电催化NRR中的潜力。与金属基催化剂相比,非金属催化剂的占据轨道只能形成共价键或共轭π键,从而阻碍了电子从催化剂到氮气分子的转移以及分子的活化。我们重点讨论了掺杂型催化剂(N,O,S,B,P,F掺杂以及共掺杂)、有机聚合物、氮化碳及缺陷和表面修饰催化剂。最后,我们还讨论了提高NRR性能的方法,展望了非金属电催化剂的发展前景。
作为未来最有潜力的制氢技术之一,电解水为解决环境污染和能源危机等问题提供了一种有效的解决途径。然而,阳极析氧反应缓慢的动力学和较高的过电位使其成为电解水装置效率提升的主要瓶颈。因此,开发高活性和高稳定性的析氧反应催化剂对于电解水技术的发展具有重要意义。近年来,镍基金属有机框架材料因其具有丰富可调的拓扑结构、较大的比表面积以及多孔特性,在催化领域受到了越来越多的关注。本文综述了镍基金属有机框架及其衍生材料在析氧催化研究中的最新进展。首先简要介绍了镍基材料在析氧反应中的原理及评价析氧催化剂活性的一些重要参数,并列举了几种镍基金属有机框架材料的结构及其在催化中的优势。随后,结合近年来发表的文献,对单金属、双金属和三金属镍基金属有机框架材料及其衍生物在析氧催化中的研究进展进行了总结与讨论,重点分析了该类材料的设计策略和催化机理。最后对该领域目前所面临的主要挑战以及未来的发展趋势进行了总结与展望。
高熵合金具有广泛的成分调制范围和固有的复杂表面,使其有望成为理想的电催化材料。最近的研究表明,高熵纳米合金在电催化反应中表现出优异性能。本文总结了近年来高熵纳米合金催化剂的研究进展。第一部分介绍了高熵合金的概念、结构及四个“核心效应”;第二部分总结了包含碳热冲击法、纳米液滴介导电沉积法、快速移动床热解法、多元醇法和脱合金法等制备方法;第三部分探讨了高熵纳米合金电催化剂对于各个不同电化学反应的研究进展;在最后,本文展望了高熵纳米合金在电催化领域的未来发展趋势。
过渡金属电催化剂因其优良的电催化性能、低廉的成本,以及在电解水、燃料电池、锌空电池等领域展现出极大的应用潜力,逐渐成为人们的研究热点。其中,过渡金属氮化物(Transition Metal Nitrides,TMNs)因氮化过程能使金属的d带收缩变窄,填充态发生改变,从而调节金属-氢的键能,达到提高导电性及催化活性的目的,近来备受学者们的关注。因此,本文综述了TMNs纳米电催化剂的最新研究进展,包括借助d带理论讨论了氮元素对其结构及活性的影响;评述了TMNs的物理、化学等合成方法及掺杂、复合等改性方法;列举了其在析氢反应、析氧反应、氧还原反应等电催化领域中的重要应用;最后,指出了TMNs在现阶段所面临的挑战和问题,并对其今后发展作出展望。
开发用于各种能量转化过程的新型催化剂对于满足绿色和可持续能源的需求至关重要。由于其具有可调节的晶体结构,显著的化学和物理性质以及稳定性,金属有机骨架(MOFs)已经广泛应用于电化学能量转换领域,比如CO2还原反应、N2还原反应、析氧反应、析氢反应和氧还原反应。更重要的是,MOFs具有可调节的化学环境、孔径和孔隙率,这些性质将促进反应物在多孔网络中的扩散,从而改善其电催化性能。但是,由于高的电荷转移能垒和受限的自由载流子,大多数MOFs展示了差的导电性,阻碍了其多样化应用。在先前的报道中,MOFs常被用作多孔基质来限制纳米颗粒生长或经退火处理作为共掺杂电催化剂。而导电MOFs不仅结合了传统MOFs的优点,还具有电子导电性和高电催化活性,使其无需退火处理就可以通过电子或离子途径实现导电,从而极大提高了电催化性能,这有助于拓宽其在电化学能源领域或其他方面的潜在应用。在一些催化反应中,导电MOFs的催化活性甚至超过了商业化的RuO2催化剂或Pt基催化剂。本文主要总结了构建导电MOFs的机制,并概述了其合成方法,如水/溶剂热合成和界面辅助合成。此外,本文阐述了导电MOFs在电催化应用中的最新研究进展。值得一提的是,导电MOFs的形态和结构可改变底物与MOFs之间的界面接触,从而影响其催化性能,需要进一步深入研究。基于系统的合成策略,在未来可以根据各种电催化反应的需求设计合成更多的导电MOFs。高性能的导电MOF基催化剂将有望获得突破。
空心结构和特定表面功能赋予球形组装体卓越的高性能与新特性,在催化、光催化、能量转换、存储以及生物医学等领域具有广阔的应用前景。以作者团队的研究结果为主,本综述概述了表面氟化TiO2多孔空心微球(F-TiO2 PHMs)的制备及其光催化应用进展。本文中,F-TiO2 PHMs的合成策略主要包括简化的两步模板法,以及基于氟诱导自转变机制(FMST)的无模板法。与两步模板法相比,FMST法中模板的形成、包覆与去除都在“黑箱”式的一步反应中完成,无需额外的认为处理步骤。FMST法制备F-TiO2 PHMs暗含四个基本步骤:成核、自组装、表面再结晶与自转变。通过控制FMST法的四个基本步骤,经过简单的水热处理可以成功制备高产量的F-TiO2 PHMs,同时F-TiO2 PHMs的多层次微观结构参数,如空腔、多级孔、一次纳米粒子的组成与结构等,均可以很好地裁剪调控。F-TiO2 PHMs在光催化应用中具有增强光吸收、促进传质、降低膜污染等结构优势。同时,F-TiO2 PHMs制备过程原位引入表面氟修饰,带来显著表面氟效应,不仅有利于反应物分子的吸附和活化,而且有利于光生电子和空穴的表面俘获和界面转移。并且,多孔空心结构对客体修饰,如离子掺杂、基团功能化和纳米粒子负载等,表现出更好的相容性和耐受性,可以进一步提高F-TiO2 PHMs的光催化性能。结合F-TiO2 PHMs的主客体协同修饰作用,可以同时增强光吸收范围与强度,降低电荷复合几率,促进传质与吸附,提高表面反应效率,因此整个光催化过程可以综合调控协同优化。综上所述,F-TiO2 PHMs具有丰富的组成/结构参数和优异的理化性质,结合空心结构、分等级多孔性、表面氟化等特征,以及主/客体协同修饰作用,实现一体化调控复杂的光催化过程,改善光催化性能,为光催化技术潜在应用发展提供保障。
二氧化钛是目前被广泛研究和运用的金属氧化物。该文章总结当前二氧化钛负载单原子金属,包括铂、钯、铱、铑、铜、钌等催化剂的制备方法、表征手段和光催化反应的运用。二氧化钛表面负载单原子金属的主要制备方法包括表面缺陷法、表面修饰、高温脉冲及表面金属配体组装等。该文章探讨这些制备方法的控制条件和实用范围,并讨论负载型单原子催化剂的表征手段,包括电镜表征(球差校正扫描透射显微镜和扫描隧道显微镜)和谱学分析(扩展的X-光吸收精细结构分析、分子探针红外吸收谱等)。最后文章针对二氧化钛负载单原子催化剂在光催化水裂解产氢的作用机理和在光催化二氧化碳还原反应的运用做出讨论。
石墨相氮化碳(g-C3N4)作为一种不含金属的有机高分子材料,因独特的能带结构、易于制备以及成本低廉而备受关注。但一些瓶颈问题仍然制约着其光催化活性。截至目前,人们已经尝试了许多方法来优化g-C3N4的光电性能,例如:元素掺杂、官能团改性以及构筑异质结等,而这些改性策略均与g-C3N4的表面行为密切相关。所以,g-C3N4的表面行为对其光催化性能起着关键作用。因此,本文对典型表面改性方法(表面功能化和构建异质结)制备的g-C3N4基光催化剂进行了全面综述,阐述了其光激发和响应机制,详细介绍了其可见光照射下光生载流子的转移路线和表面催化反应。此外,本文总结了表面改性g-C3N4基光催化剂在光催化制氢与CO2还原方面的潜在应用。最后,根据已有研究,我们提出了今后有待进一步探索与解决的几方面问题。
受植物光合作用的启发,研究者发展了多种模拟光合作用体系用于光分解水、二氧化碳光还原和氮光固定以生产“太阳燃料”(如氢气、甲烷和氨气),以期缓解当前的能源短缺和环境污染。尽管基于人造半导体材料的光合作用是一种潜在、理想的以“太阳燃料”的化学键形式存储太阳能的方法,但是构筑能够在规模和成本方面与化石燃料竞争的生产“太阳燃料”的人工光合作用体系仍然存在巨大的挑战。因此,开发低成本的高效光催化剂对于促进人工光合作用的三种主要光催化过程(光俘获、电荷产生与分离,以及表面/界面催化反应)具有重要的意义。在已研究的各类光催化剂中,Z-型异质结复合体系不仅可以提高光俘获能力和显著抑制电荷载流子复合,而且还可通过保持光激发电子/空穴的强还原/氧化能力来促进表面/界面催化反应,因而受到广泛关注。将太阳能转化为化学能的Z-型纳米异质结的研究证明这些异质结在提高生产“太阳燃料”的光催化反应体系的整体效率方面的重要性。该综述主要介绍了Z-型异质结的发展历史和直接Z-型异质结相较于传统Ⅱ型异质结、液相Z-型和全固态Z-型异质结的优势,并阐述了两步激发Z-型光催化体系的反应机理和途径。然后,从材料组成角度重点介绍了近5年来不同类型Z-型纳米结构材料(无机,有机和无机-有机复合材料)在光催化能源转换领域的应用,以及提高Z-型纳米结构材料光催化性能的各种调控/工程策略(如扩展光谱吸收区、促进电荷转移/分离和表面化学改性等)。此外,还讨论了Z-型光催化机理的表征方法与策略(如金属负载法、牺牲试剂测试法、自由基捕集实验、原位X-射线光电子能谱、光催化还原实验、Kelvin探针力显微镜、表面光电压光谱、瞬态吸收光谱及理论计算等)及光催化性能的评价方法和标准。最后,介绍了Z-型异质结光催化体系目前面临的挑战和发展方向。我们希望该综述能为光催化体系的性能突破方向提供新的认识,并为新型Z-型光催化材料的设计和构筑提供指导。
在寻求可再生能源供应及解决环境问题的迫切需求下,光电、光催化、电催化等领域中多种技术被开发以解决这一迫切问题。其中,光催化技术因其可将清洁太阳能转化为化学燃料的优越能力而备受关注。在层出不穷的光催化材料中,具有阳离子可替代性的钙钛矿氧化物(ABO3)在电子信息、太阳能电池和光催化等领域具有极大的潜力。由于这类材料具有活性高、成本低、稳定性好、结构易调控等独特性能,钙钛矿氧化物光催化剂在水分解、二氧化碳还原转化、固氮等方面取得了广泛的应用。本文综述了光催化的结构与合成方法,重点介绍了光催化的应用,最后展望了光催化的未来发展前景。
通过电能将二氧化碳转化为高附加值的工业产品:一方面有利于大幅度减少空气中二氧化碳这类温室气体的含量,同时也实现了电能到化学能的转化,实现电化学储能。尽管对二氧化碳电化学还原的研究已经有三十多年,但仍然缺乏高效地将二氧化碳电化学还原的催化剂。目前,已报道的研究体系在催化性能上远远无法满足工业生产的要求。为了开发制备更高效的二氧化碳电化学还原催化剂,深入理解二氧化碳电还原反应机理至关重要。在研究电化学反应机理方面,理论模拟可以从原子水平提供基元反应的反应细节和能量信息,补充了实验无法提供的微观反应机理。一方面解释了已有实验现象,另一方面也为反应机理的研究提供了新的认识。在此基础上,利用高通量计算和机器学习这些新的研究范式,为加速材料开发提供了理性设计的新思路。在本工作中,我们将对近些年来二氧化碳电还原方面的理论研究工作进行系统性的总结。
高效利用CO2资源对绿色可持续发展具有重要意义。近年来,高效催化转化CO2为高附加值化学品的研究广受关注。但是,由于CO2高的热力学稳定性和动力学惰性,其化学转化往往需要高反应活性的底物和苛刻的反应条件。因此,科研工作者致力于发展催化转化CO2的高性能催化剂和新方法。迄今,已经发展了一系列多相和均相催化剂用于催化转化CO2。在众多性能优异的催化剂中,离子液体因其独特的性能,可实现温和甚至室温条件下高效转化CO2为高附加值化学品,而被广泛研究。具有特定官能团的功能化离子液体可以作为溶剂、CO2吸附剂、CO2活化剂以及催化剂或共催化剂,实现无金属条件下高效催化转化CO2;各种金属-离子液体耦合催化体系可实现协同催化转化CO2为高附加值化学品。在本文中,我们总结了近期离子液体介导的、通过构筑C—O、C—N、C—S、C—H以及C—C键,转化CO2合成化学品的研究。主要概述了近年来离子液体在化学吸附活化CO2、催化转化CO2制备碳酸酯和含N/S杂原子的化合物以及催化CO2加氢制备甲酸、乙酸、甲烷、低碳产物等方面的研究进展,并对相关反应路径和机理进行了探讨。在离子液体催化反应体系中,离子液体不仅可以活化CO2还可以通过氢键作用活化底物,从而协同催化CO2的转化。在本文的最后,对相关研究的不足及未来发展前景进行了探讨和展望。总之,离子液体介导的高效催化转化CO2方法为制备高价值化学品提供了绿色合成路线,具有广阔的应用前景。
有限的化石燃料与不断增长的能源需求的矛盾和因温室气体大量排放导致的异常气候变化这两大相关问题引起全世界范围内的关注。二氧化碳(CO2)是一种主要的温室气体,同时也是合成燃料和化学品的重要C1资源。利用CO2参与合成化学品能有效减少温室气体的排放。然而,高度氧化、热力学稳定的CO2的化学转化仍然是一较大挑战,需要引入还原剂等参与CO2的化学转化。作为理想的还原剂,氢气(H2)可将CO2逆水煤气变换(RWGS)转化为一氧化碳(CO),考虑到有毒CO的繁琐分离和运输,众多研究利用原位生成的CO参与到各种羰基化反应中,既得到了高附加值的化学品,又避免了CO的直接使用。基于此,过渡金属催化CO2/H2参与的羰基化反应得到了广泛地关注和研究,实现了CO2/H2参与的烯烃羰基化生成醇、羧酸、胺、醛等产物。同时多相催化的烯烃羰基化的实现为该领域开发了新的催化体系。在烯烃羰基化的基础上,该领域得到了进一步的发展,CO2参与羰基化的反应路径变得更加丰富,如出现了CO2加氢到甲酸(HCOOH),HCOOH到CO的间接生成CO的路径和CO2直接参与羰基化的反应路径,实现了CO2/H2参与的卤代烃、甲醇(MeOH)及其衍生物等的羰基化反应,获得芳醛、乙酸、乙醇等大宗或精细化学品。CO2/H2参与的羰基化研究的快速发展拓展了CO2资源化利用的途径,获得高附加值的大宗或精细化学品,促进了绿色化学的发展。本文主要围绕过渡金属催化CO2/H2参与的多种羰基化生成高附加值化学品的反应,总结了近年来的研究进展,并对该方向的发展做了展望。
可再生能源驱动的二氧化碳电催化还原反应(CO2RR)是实现CO2高效转化和利用的有效途径。电解器的理性设计对于提高CO2RR性能及其工业放大应用具有重要意义。电解器构型及其操作条件在很大程度上决定了电极附近的局部反应环境,从而调变催化性能。本文深度剖析了三种CO2电解器(H型电解池、流动电解池和膜电极电解池)的研究进展和现状,结合文献报道,在电流密度、法拉第效率、能量效率和稳定性等四个关键性能参数上比较和讨论了不同电解器构型的优缺点及其对CO2RR性能的影响。面向实际应用的CO2RR研究应该把工业级电流密度作为提高其它三个指标的前提。尽管目前还存在一些问题和挑战,膜电极电解器被认为是最具工业应用前景的技术方案。本文最后提出了一些可能的研究策略和机遇,展望了该领域的未来发展趋势。
利用太阳能将CO2还原成燃料或高附加值的化工原料,是解决能源危机和气候变暖的理想途径,其中的关键问题是开发高效的催化剂。近年来,非贵金属Co(Ⅱ)配合物作为分子催化剂在光催化CO2还原方面展现出良好的催化性能。本文按配体的不同种类,系统介绍Co(Ⅱ)配合物分子催化剂在光催化CO2还原方面的最新研究进展。并在此基础上,重点分析配合物分子结构对催化效率、选择性和稳定性的影响,总结构效关系。最后,针对在光催化CO2还原中存在的问题,提出了Co(Ⅱ)配合物分子催化剂的设计思路,并对Co(Ⅱ)配合物分子催化剂用于光催化CO2还原的前景进行了展望。
二氧化碳(CO2)是大气层中温室气体的主要成分,资源化利用二氧化碳既可以减少二氧化碳排放又可以利用二氧化碳制备高附加值化学品。通过人工光合作用系统将二氧化碳还原为一氧化碳、甲烷等太阳燃料被认为是二氧化碳资源化利用的理想方式。纳米半导体材料因其丰富的光物理和光化学特性以及优异的光稳定性被作为光敏剂或光催化剂用于构筑光催化二氧化碳还原体系,其中CdS和CdSe(如溶胶量子点、纳米棒、纳米片)是研究较多的两种纳米半导体材料。基于CdS或CdSe纳米半导体材料的光催化二氧化碳还原体系可分为三类:(i)基于CdS、CdSe的光催化二氧化碳还原体系;(ii)基于CdS、CdSe复合材料的二氧化碳还原体系;(iii) CdS和分子催化剂构筑的杂化二氧化碳还原体系。本文介绍了人工光合作用体系的构筑以及半导体纳米材料光催化机理,总结了上述三类体系中的代表性工作,最后讨论了基于纳米半导体材料的光催化二氧化碳还原研究前景和面临的挑战。
高效利用温室气体CO2资源作为催化合成的C1原料既能有效减少它向大气的排放,又同时创造经济价值。其中基于CO2还原性转化的化学品合成新路线是拓展其资源化利用的热点。如能以清洁、高原子经济性的H2作为还原剂实现惰性CO2还原性转化,通过羰基化构筑C―O、C―N和C―C键,合成醛/醇、羧酸、酯、酰胺等化学品,将极大扩展由CO2高值化利用的范围与种类。近年来,均相催化CO2/H2还原羰基化制备化学品取得长足的进展,但该反应目前仍存在常用贵金属催化剂反应条件苛刻、目标产物选择性低以及底物适用性差等问题,制约了其的发展和应用。因此,设计开发更加高效的催化体系使反应能在相对温和的条件下得以实现仍然是一较大挑战。本文综述近年来均相催化CO2、H2参与的烯烃羰基化、胺羰基化、醇/醚羰基化以及其它羰基化反应研究及发展现状,重点探讨了不同种类的金属催化剂对反应过程的影响。最后对未来可能的发展方向进行了探讨和展望。
近年来,由于其接近100%的原子利用率和独特的催化性能,单原子催化剂研究受到了极大的关注。近年来,人们针对二氧化碳选择性催化转化的单原子催化剂研究开展了大量的工作,实现了一氧化碳、甲烷、甲醇、甲酸以及C2+化合物等化学品的选择性合成。此外,通过引入胺类以及环氧化合物,二氧化碳可以催化转化为高附加值的精细化学品。本综述总结了近几年来单原子催化剂通过电催化、光催化以及热催化的方法在二氧化碳选择性还原方面的研究工作,并深入探讨单原子催化剂在二氧化碳选择还原反应中的结构性能关系以及其结构的调控对催化剂活性的影响。
化石燃料的大量使用造成大气中CO2含量不断上升,带来了一系列气候及环境问题。将温室气体CO2进行捕集并转化利用有助于缓解能源短缺和全球变暖等问题,其中电化学技术因其具有温和可控的工作条件以及与可再生能源的相容性等特点,成为了一种很有前景的CO2转化利用技术。铜催化剂因其在电化学还原CO2过程中可以产生高价值的碳氢化合物而受到广泛关注与研究,但是有效产物的选择性依然较低,特别是C2+物种。因此提高铜基催化剂表面产物选择性成为了该领域研究难点与热点。为此,本文主要介绍了近五年不同改性方式的Cu基催化剂在选择性制备C2+产物方面的研究进展,概述了可能的反应机理并且总结了影响产物选择性的因素,最后提出了该领域进一步的研究方向与展望。
随着工业化进程加快和消费结构的持续升级,大气中CO2的含量远超过去水平,成为了一个严重的全球性环境问题。光催化CO2还原是解决大气中二氧化碳含量上升的最有前景的手段之一,该技术的核心是开发高效、环保、廉价的光催化剂。凭借大比表面积、大量低配位表面原子,从催化剂内部到表面转移距离更短等性能优势,超薄层状材料显示出实现光催化二氧化碳还原的巨大潜力。本文总结了用于光催化CO2还原的超薄层状光催化剂的最新进展,对现有催化剂进行了分类,对其制备方法和光催化CO2还原机理进行了介绍。另外,重点对保持超薄催化剂层状结构的前提下,采用厚度调整、掺杂、构造缺陷和复合等改进催化剂光催化性能的策略进行了讨论。最后,对用于光催化二氧化碳还原的超薄层状光催化剂的未来机遇和挑战进行了展望。
自2009年以来,有机-无机卤化物钙钛矿因其独特的光学和电学性能,在光电材料领域受到了广泛的研究,尤其是Pb基的卤化物钙钛矿太阳能电池,目前光电转换效率高达创纪录的约25.2%,显示出强大的商业化潜力。然而,Pb元素的毒性及因而导致的环境隐患问题,一直是其产业化过程中的顾虑之一。因此,寻求能替代Pb的环境友好的元素,是一个十分重要的课题。Pb基钙钛矿材料优异的光电特性来源于Pb2+的最外层6s2孤对电子,与Pb元素同主族的Sn元素能够形成三维钙钛矿结构且同样具有惰性5s2外层电子结构,因而是替代Pb的首选。本文系统地介绍了Sn基钙钛矿的光学和电学性质,并从薄膜制备方法和不同的器件结构方面介绍Sn基钙钛矿太阳能电池的最新进展。
缺陷在钙钛矿太阳能电池的快速发展中起着至关重要的作用。缺陷容忍性,即金属卤化钙钛矿的主导缺陷是浅能级缺陷,它们不会成为强非辐射复合中心,这被认为是金属卤化钙钛矿的独特特性,是其具有高光电转换效率的主要原因。然而,要进一步提高金属卤化钙钛矿的光电转换效率,就需要消除一些可作为非辐射复合中心并严重影响器件性能的少量深能级缺陷,包括点缺陷、晶界、表面和界面等。本文综述了缺陷容忍的研究进展,包括软声子模式和极化子效应。此外,还总结了缺陷钝化的策略,包括通过阳离子或阴离子来钝化离子键,以及通过路易斯酸或路易斯碱来钝化配位键等。
近年来,铅卤钙钛矿纳米晶因其易制备,低成本,高性能等特性引起了人们极大的关注。钙钛矿纳米晶的光电性能优越应用潜力巨大,然而稳定性问题制约着它进一步发展,使其无法与已经商业化的应用相匹敌。针对钙钛矿材料的稳定性问题,人们展开了很多研究,其中一个方面就是光照稳定性。该方面的研究可以为制备高稳定性钙钛矿材料和器件奠定基础,还可以利用光照(特别是激光)来调控钙钛矿的结构和性能,拓展其在光电领域的全方位应用。本文专注于激光照射下钙钛矿的变化及其相关应用,首先综述了激光辐照铅卤钙钛矿时出现的变化现象以及微观机理;其次,基于这些变化机理,介绍了最近研究人员如何使用激光技术对钙钛矿薄膜和器件进行性能调控,以及激光直写钙钛矿技术的相关应用。
钙钛矿材料具有吸收系数大、载流子迁移率高、可溶液加工等特点,在太阳能电池、发光二极管、光电探测等领域具有潜在的应用价值。钙钛矿的光电性质与其维度、尺寸、形貌密切相关,因此研究材料的生长是实现高性能器件应用的基础。钙钛矿前驱体与溶剂之间的配位作用对钙钛矿的生长过程具有重要影响。本综述总结了钙钛矿前驱体与溶剂之间的配位作用对钙钛矿单晶、多晶薄膜、量子点三类体系制备的影响,讨论了在上述材料制备中的溶剂配位效应,特别是溶剂配位效应所形成的溶剂化物对材料生长过程,以及所制备的材料(形貌、晶相、缺陷、稳定性)的影响。最后,我们对这一研究方向存在的问题和挑战进行了分析和展望。
金属卤化钙钛矿由于具有优异的光电性能(如:高电子/空穴迁移率,高荧光量子产率,高色纯度,以及光色可调性等),成为应用于发光二极管(LED)的理想材料。近年来,钙钛矿LED的发展十分迅速,红光和绿光钙钛矿LED的外量子效率(EQE)均已超过20%。然而,蓝光(尤其是深蓝光)钙钛矿LED的EQE以及稳定性依然相对落后,这严重制约了钙钛矿LED在高性能、广色域显示领域和高显色指数白光照明领域的应用。因此,总结现阶段蓝光钙钛矿LED的发展,并剖析其机遇与挑战,对未来蓝光甚至整个钙钛矿LED领域的发展至关重要。本文将蓝光钙钛矿LED根据光色细分为天蓝光、纯蓝光、深蓝光三大部分进行总结,回顾了三种LED器件的发展历程,并详细阐述了现阶段实现他们的主要手段以及相关的基础原理,最后分析了它们各自的问题并提出了相应的解决思路。
近年来,基于有机无机金属卤化物钙钛矿的叠层太阳能电池引起了巨大的研究热潮。但是,不稳定性限制了其商业化。适用于顶部子电池的宽带隙钙钛矿存在相不稳定性,而适用于底部子电池的窄带隙钙钛矿存在空气不稳定性。首先,我们总结了提升基于钙钛矿的叠层太阳能电池稳定性的最新进展。然后,我们系统地分析了导致宽带隙钙钛矿的相不稳定性和窄带隙钙钛矿的空气不稳定性的原因,并为解决这些不稳定性问题总结了合理的策略。我们也简短地总结了中间层带来的不稳定性以及相应的解决措施。最后,我们回顾了钙钛矿材料固有的本征不稳定性和相应的改进方法,这对于将来发展更稳定的叠层太阳能电池中是必要的。我们认为随着对钙钛矿子电池的理解越来越深入,基于钙钛矿的叠层电池特别是钙钛矿/硅叠层电池将会迅速商业化。