用表面张力法研究了阳离子gemini表面活性剂乙基-1, 2-双(十二烷基二甲基溴化铵)(简写为12-2-12)和非离子表面活性剂十二烷基聚氧乙烯醚(C12En,其中n = 4, 10, 23)混合体系在气液界面上的吸附行为;用扩张流变技术研究了吸附膜的扩张粘弹行为,实验数据用Lucassen-van den Tempel (LVT)模型进行拟合并根据模型得到了极限弹性值.最后研究了混合体系的泡沫行为,用泡沫塌陷到初始高度一半所对应的时间(t1/2)来表征泡沫的稳定性.结果表明,所有的非离子表面活性剂C12En均与12-2-12产生了吸引作用.在12-2-12浓度相同的情况下,混合吸附层中吸附分子的最小分子占据面积的顺序为12-2-12/C12E23 > 12-2-12/C12E10 > 12-2-12/C12E4,而极限弹性的顺序为ε0, fit(12-2-12/C12E4) > ε0, fit(12-2-12/C12E10) > ε0, fit(12-2-12/C12E23).与单组分12-2-12形成的吸附膜相比,只有12-2-12/C12E4形成更加紧密的结构.具有较小亲水头基的非离子表面活性剂C12E4的加入,可增强12-2-12吸附膜的弹性,进而增强了对应体系泡沫的稳定性.
采用流变测试技术考察了两种阴离子表面活性剂油酸钠(NaOA)和芥酸钠(NaOEr)在四丁基溴化铵(TBAB)和KCl诱导下构筑蠕虫状胶束的行为.随着KCl浓度增加, NaOA水溶液粘度增加,而加入TBAB使NaOA-KCl样品的粘度持续降低.与之相反, TBAB浓度的增加却使NaOEr-KCl样品的粘度大幅度增强.此外, NaOEr分子比NaOA表现出更强的形成胶束的能力,构成粘弹性蠕虫状胶束所需表面活性剂浓度和盐浓度更少.本文采用TBAB和KCl两种盐协同诱导NaOEr,制备了具有强粘弹性的阴离子蠕虫状胶束,探讨了盐TBAB/KCl对长链阴离子表面活性剂构筑蠕虫状胶束的影响机理.
利用座滴法研究了两性离子表面活性剂苄基取代烷基羧基甜菜碱(BCB)和苄基取代烷基磺基甜菜碱(BSB)在聚四氟乙烯(PTFE)表面上的润湿性质,考察了表面活性剂浓度对接触角的影响趋势,并讨论了粘附张力、固-液界面张力和粘附功的变化规律.研究发现,在低浓度时,表面活性剂通过疏水作用吸附到PTFE表面,疏水链苄基取代支链化使其在固-液界面上的吸附明显低于气-液界面,接触角在很大的范围内保持不变.当体相浓度增加到大于临界胶束浓度(cmc)时, BCB和BSB分子在固-液界面上继续吸附,分子逐渐直立,造成PTFE-液体之间的界面张力(γSL)进一步降低,表面亲水性增加,接触角随浓度增加明显降低;另一方面, BSB由于具有较大的极性头,在高浓度时空间阻碍作用明显,导致其对PTFE表面润湿性改变程度小于BCB.
利用原子转移自由基聚合(ATRP)方法,由单体2-(2-甲氧基乙氧基)甲基丙烯酸乙酯(MEO2MA)和寡聚(乙二醇)甲基醚甲基丙烯酸酯(OEGMA, Mn = 500 g·mol-1)合成了无规共聚物P(MEO2MA-co-OEGMA).并采用动态光散射(DLS)、紫外光谱及透射电子显微镜(TEM)等技术考察聚合物在水溶液中的温度响应性聚集行为,获得其在水溶液中的最低临界溶解温度(LCST)及其随组成的变化规律.结果表明,该聚合物具有良好且可逆的温度响应行为,这主要归因于聚合物与水分子之间氢键作用,及其分子本身疏水作用之间为了保持一种微妙的动态平衡而自发对聚集形态进行的“自我调整”,从而达到新的热力学平衡状态的结果.该聚合物的LCST与聚合物中单体OEGMA所占的摩尔比例呈线性关系,可以通过改变单体的摩尔配比实现对聚合物LCST的调控.
本文提出液晶/水界面上氢键作用可以诱导热致型液晶(戊基联苯氰,简称: 5CB)发生取向转变.当液晶5CB膜接触酚类(如对硝基苯酚)水溶液的时候,由于酚类物质的酚羟基与液晶5CB分子中的氰基在液晶水界面上形成了氢键,在氢键的作用下使得液晶5CB由平行取向转变成了垂直取向.此外,还利用了液晶传感器可视化了酚类物质与牛血清蛋白(BSA)之间的相互作用.本文的研究结果可为研究液晶/水界面上的界面现象提供新的思路,并且有望开发出基于氢键作用的液晶生物化学传感技术.
脂肪酸囊泡(FAV)具有与脂质体类似的中空核壳结构, 且原料来源广泛, 绿色安全, 在包埋/缓释方面有重要意义. 但FAV对pH值依赖性强, pH窗口很窄并偏离生命体系适应pH范围, 限制了其作为包埋/缓释体在日用化学品及外用药等中的应用. 本文用绿色安全非离子表面活性剂烷基糖苷(APG)使共轭亚油酸(CLA)形成FAV的pH窗口从原先的8.0-9.0 迁移并扩张至6.0-8.0, 从而与生命体系适应pH值范围相匹配, 并探讨了改善FAV的pH值依赖性和敏感性的原理.
为阐明脂肽分子烷基链长及肽链电荷分布对其自组装及水凝胶化的影响, 设计合成了CnV3K2 (n=12, 14, 16) 和CmKV3K (m=14, 16)两个系列的脂肽分子. 原子力显微镜(AFM)和透射电镜(TEM)结果表明, 两个系列的脂肽分子都可以自组装成一维纳米带结构. 圆二色(CD)光谱结果表明, CnV3K2系列自组装体的二级结构为β折叠; CmKV3K系列自组装体中包括α螺旋和β折叠两种二级结构, 其中C14KV3K的α螺旋结构较多, C16KV3K的β折叠结构占优. 烷基链疏水作用的增强会抑制β折叠结构侧向堆积, 使纳米带随烷基链的变长而变窄; 电荷分布于肽链部分的两端有利于纳米带结构的侧向生长. 流变性测试结果表明, 在浓度10 mmol·L-1、pH 8.4下, 脂肽分子可以形成自支撑水凝胶, 相比烷基链长度, 肽链部分的电荷分布对水凝胶性能影响更大.
研究了温度对碱木质素(AL)的微结构及物理化学性质的影响. 在20-60 ℃范围内, 采用表面电荷仪、动态光散射、zeta 电位仪、粘度计、表面张力仪、石英晶体微天平、紫外和荧光等仪器, 研究了AL在碱性溶液中的分子聚集形态、表面带电情况、亲疏水特性、溶液特性粘度以及AL在气液和液固界面上的吸附等性质. 结果表明, AL溶液的特性粘度、表面张力以及分子的表面电荷密度都会随温度上升明显降低, 而分子内和分子间聚集作用、分子的疏水性以及在液固界面上的吸附量会随温度上升逐渐增大, zeta 电位绝对值则呈现出先降低后上升然后再降低的趋势. 分析认为, 温度上升会同时降低AL中弱酸性基团的电离程度和AL与水分子间的氢键作用, 这两个因素的变化直接导致了AL微结构和物理化学性质的改变. 温度升高时, 水由AL的良溶剂逐渐变为不良溶剂, 尽管AL通常被视为阴离子表面活性剂, 但其受温度影响时所呈现出的变化规律却更类似于非离子表面活性剂.
基于静电作用, 阴离子表面活性剂可与阳离子聚铵组装形成复合胶束. 借助阳离子聚铵,复合胶束可以作为模板与硅源协同组装, 形成高度有序的介孔二氧化硅. 本文通过调变不同种类阴离子表面活性剂、合成体系pH值、合成温度及阳离子聚铵和硅源用量等因素, 合成了具有不同介观结构和形貌的介孔二氧化硅. 实验证实阴离子表面活性剂/阳离子聚铵复合胶束模板法是合成介孔二氧化硅的一种通用方法.
利用座滴法研究了支链化阳离子表面活性剂十六烷基羟丙基氯化铵(C16GPC)和两性离子表面活性剂十六烷基羧酸甜菜碱(C16GPB)在聚四氟乙烯(PTFE)表面上的吸附机制和润湿性质, 考察了表面活性剂浓度对表面张力、接触角、粘附张力、固液界面张力和粘附功的影响趋势. 研究发现, 低浓度条件下, 表面活性剂疏水支链的多个亚甲基基团与PTFE表面发生相互作用, 分子以平躺的方式吸附到固体界面; 支链化表面活性剂形成胶束的阻碍较大, 浓度大于临界胶束浓度(cmc)时, C16GPC和C16GPB分子在固液界面上继续吸附, 与PTFE作用的亚甲基基团减少, 分子逐渐直立, 固液界面自由能(γsl)明显降低. 对于支链化的阳离子和甜菜碱分子, 接触角均在浓度高于cmc后大幅度降低.
通过固相合成法制备了三条疏水端不同的两亲性多肽VVVVVVKKGRGDS (AP1)、C12KKGRGDS(AP2)、FAFAFAKKGRGDS (AP3). 自组装行为研究表明, 三条多肽在中性条件下(pH 7.0)均能形成球形纳米胶束, 透射电子显微镜(TEM)检测其粒径为~30 nm, 动态光散射(DLS)测试其粒径分布均一. 当pH下降为5.0时,肽链AP1的胶束结构被破坏, TEM视野中没有发现任何自组装体, 而肽链AP2和AP3的胶束结构在pH 5.0时依然存在, 但AP2的纳米粒子之间明显发生了部分聚集, 表现为团聚样分布, AP3组装体的粒径明显增大, 形貌变得不规则. DLS测试结果显示, 当pH下降到5.0时, 肽链AP1在1-1000 nm范围内没有出现吸收峰, AP2呈多峰分布, AP3呈宽单峰分布. DLS的测试结果很好地印证了TEM的测试结果. 为了探究三条多肽组装性能不同的二级结构因素, 我们对AP1、AP2和AP3进行了圆二色谱(CD)和傅里叶变换红外(FT-IR)光谱测试. 结果表明, 三条多肽在中性条件下二级结构中均存在一定含量的β-折叠, 当pH下降到5.0 时, AP1 结构中的β-折叠成分显著下降, 出现部分无规卷曲. AP2和AP3的β-折叠成分虽有变化, 但其CD主峰依然存在. 以姜黄素作为模型药物, 进一步确认AP1 载药胶束的释药行为也具有优良的酸敏感特性. AP1、AP2 和AP3 在酸性条件下自组装行为的不同, 表明调控两亲性多肽的疏水端组成有可能是调控多肽自组装性能的有效手段. AP1组装体有望成为理想的pH响应性载体材料.
利用造纸废液中的碱木素(AL)合成了木质素基偶氮聚合物(AL-azo-COOEt), 并研究其自组装胶体化过程. 木质素偶氮聚合物的成功合成通过核磁共振氢谱(1H NMR)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱和元素分析等表征方法得到证实. 激光光散射(LLS)监测了AL-azo-COOEt的胶体化过程, 自组装形成的胶体球利用透射电镜(TEM)、扫描电镜(SEM)、X射线光电子能谱仪(XPS)和元素分析等进行表征. 结果表明,木质素偶氮聚合物通过疏水聚集作用可以形成规整的实心胶体球, 且为内部较疏水外部较亲水性质的结构. 木质素偶氮聚合物胶体球可以包载疏水性药物阿霉素(DOX), 且其缓释性能可以通过缓冲溶液的pH值来调控.
利用悬挂滴方法研究了系列聚氧乙烯失水山梨醇脂肪酸酯(TweenX)在正癸烷-水界面的扩张流变性质. 实验结果表明, 疏水烷基链长较短的Tween20 分子在界面上吸附量较大, 分子排列更紧密, Tween40 和Tween60具有大致相同的“有效截面积”, 导致饱和吸附时界面张力(γcmc)比较接近. TweenX浓度大于临界胶束浓度(cmc)时, 由于Tween20 分子排列的更加紧密, 模量和弹性大于Tween40 和Tween60. 当TweenX的疏水烷基链长达到一定长度时, TweenX的界面膜性质受疏水链长的影响减弱, Tween40和Tween60的扩张参数相差不大.
通过对比碱木质素(AL)和乙酰化碱木质素(ACAL)在四氢呋喃(THF)中溶液行为和物理化学性质的差异, 揭示了乙酰化处理对碱木质素在THF中微结构的影响. 分别采用动态光散射、凝胶渗透色谱(GPC)、透射电子显微镜(TEM)、特性粘度、荧光光谱仪、耗散型石英晶体微天平(QCM-D)和自组装技术等研究了AL和ACAL在聚集形态、聚集机理以及吸附特性等方面的特征. 研究发现, 乙酰化处理会降低碱木质素在THF中的分子间和分子内聚集程度. AL在THF中以单分子和聚集体的形式共同存在, 分子较为蜷曲; ACAL在THF中则更多地是以单分子形式存在而几乎不存在大聚集体, 分子较为伸展, 其流体力学半径要比相同绝对分子量的AL更大.THF中的AL聚集体会在液固界面上发生强烈的吸附, 但ACAL由于与溶剂间的相互作用较强而几乎不会吸附在液固界面上. 由于AL分子在THF中较为蜷曲且吸附能力较强, 因此利用以THF为流动相的GPC直接测量AL的分子量时所得结果并不准确, 为保证GPC的测量结果更加全面可靠, 需要在测量前对碱木质素进行乙酰化处理.
采用界面扩张流变技术研究了季铵盐偶联表面活性剂C12-(CH2)2-C12·2Br (Gemini12-2-12)及其与离子液体表面活性剂溴化1-十二烷基-3-甲基咪唑(C12mimBr)复配体系的动态界面张力、扩张流变性质和界面弛豫过程等, 探讨了C12mimBr 对C12mimBr/Gemini12-2-12 混合体系界面性质的影响及C12mimBr 对Gemini12-2-12界面聚集行为影响的机制. 结果表明, 随着离子液体表面活性剂的不断引入, 体系界面吸附达到平衡所需的时间逐渐缩短, 扩张模量和相角明显降低, 界面吸附膜由粘弹性膜转变为近似纯弹性膜; 同时, 界面及其附近的弛豫过程也发生显著变化, 慢弛豫过程消失, 快弛豫过程占主导地位, 且离子液体浓度越高, 快弛豫的贡献越大. 这些界面性质的变化主要归因于离子液体表面活性剂C12mimBr参与界面形成及两表面活性剂在界面竞争吸附的结果. 少量离子液体表面活性剂C12mimBr 的加入可以填补疏松的Gemini12-2-12 界面上的空位, 形成混合界面吸附膜. 随着C12mimBr 含量的增加, 嵌入界面的C12mimBr 分子数不断增多, 导致界面上相互缠绕的Gemini12-2-12烷基链“解缠”, 在体相和界面分子扩散交换的过程中“解缠”的Gemini12-2-12分子从界面上解吸回到体相, 与此同时, C12mimBr 分子相对较小的空间位阻及较强的疏水作用促使其优先扩散至界面进而取代Gemini12-2-12分子, 最终界面几乎完全被C12mimBr分子所占据.
设计合成了系列单链L-苯丙氨酸衍生物,该系列衍生物单组分没有胶凝性能. 选择脂肪胺作为配对物,与L-苯丙氨酸衍生物组成双组分体系后能够胶凝许多有机溶剂形成凝胶. 流变学测试显示该凝胶体系弹性模量(G’)比粘性模量(G")约高一个数量级,有着很好的机械性能,并且呈现出典型的类固体的流变学行为. 傅里叶变换红外(FT-IR)光谱、核磁共振(NMR)谱、小角X射线衍射(SAXS)和扫描电镜(SEM)结果表明,凝胶中胶凝剂分子形成纤维状或片层状的聚集体,羧基(―COOH)和氨基(―NH2)的酸碱作用、酰胺基团间(―CONH―)的氢键作用以及分子间范德华作用力是形成该凝胶的主要驱动力. 凝胶中胶凝剂分子自组装形成具有周期性的层状有序结构,层状结构进一步组装形成纤维状聚集体,最终形成三维网状结构阻碍溶剂流动形成凝胶.
六重氢键的异互补寡聚芳酰胺双股分子链在自组装过程中表现出极高的顺序专一性. 本文借助扫描电镜(SEM)、透射电镜(TEM)和动态光散射(DLS)等实验手段,研究了氢键编码顺序为DADDAD-DADDAD的寡聚芳酰胺分子1及异互补分子2(ADAADA-ADAADA)存在下的自组装行为. 实验结果表明,分子1在四氢呋喃/甲醇(体积比为85/15)和单一溶剂丙酮中都能组装成大小均匀的囊泡结构,并且囊泡的尺寸随着溶液浓度的增加而增大;当加入异互补分子2后,囊泡则转变成实心球. 利用荧光显微镜,发现该囊泡能很好地包裹荧光分子(罗丹明B),通过进一步分子结构修饰有可能实现药物包埋和缓释方面的应用.
使用接触角、原子力显微镜(AFM)、静电力显微镜(EFM)和傅里叶变换红外(FTIR)光谱对辛基三乙氧基硅烷(C8TES)/十八烷基三氯硅烷(OTS)均相混合自组装单分子膜(SAM)及其形成过程中样品表面的润湿性、表面形貌、表面电势和膜内分子的有序度进行了表征,对采用分步法利用C8TES分子空间位阻制备C8TES/OTS均相混合SAM的反应机制进行了研究. 结果表明,C8TES/OTS均相混合SAM表面接触角为105°,样品表面平整、光滑;对样品表面电势进行分析后发现,混合SAM表面电势分布均匀,电势频率分布为典型的正态分布;在均相混合SAM的形成过程中,样品表面电势的分布始终十分均匀,电势频率分布均为典型的正态分布;C8TES/OTS均相混合SAM是一种具有上下两层分子排列密度不同的膜结构的单分子膜,其内部结构至少在500 nm×500 nm到20 μm×20 μm尺度上是高度均匀一致的,膜内没有明显的特征结构,具有典型的均相混合SAM特征.
从N-异丙基丙烯酰胺(NIPAM)和丙烯酸(AA)单体合成了一种全亲水无规共聚物P(NIPAM-co-AA),实验发现该聚合物在水相中可以产生pH或温度双重刺激响应性自组装. 采用透射电子显微镜(TEM)观察了自组装体的形貌,采用动态光散射(DLS)和静态光散射(SLS)观察了其粒径及粒径分布. 测定了该聚合物水溶液的最低临界溶解温度(LCST)及其zeta 电位随pH的变化,通过分析NIPAM和AA两种链节的质子化状态随温度和pH变化的趋势,阐释了其在水相中产生双重响应性自组装的推动力;并结合傅里叶红外(FT-IR)光谱测定自组装体表面富集基团的结果,进一步阐释了不同环境下自组装体的微结构. 这类全亲水无规共聚物的合成方法简单,具有pH和温度双重响应性,其全水相中的刺激响应性自组装行为在药物释放等方面具有潜在的应用价值.
利用阴阳离子表面活性剂复配技术,实现了高含水量原油体系的乳化及增粘. 通过调整表面活性剂分子结构,解决了阴阳离子表面活性剂复配体系在油田模拟水中的溶解度问题. 确定了相关体系高含水量油包水(W/O)乳状液的表面活性剂浓度,研究了可以产生高含水量油包水乳状液的油水混合体积比范围,并研究了温度、pH值、油水混合比例和离子强度对乳化及增粘作用的影响. 获得了一系列具有优良乳化效果和乳状液稳定性的体系,其中部分体系粘度可增大80倍. 这对于三次采油提高采收率有重要意义.
目前大分子水溶胶对于味觉物质的影响机制研究主要集中于胶体自身的性质以及胶体结构与味物质的相互作用. 本文选择了食品中常用的瓜儿豆胶(GG)和刺槐豆胶(LBG),研究了这两种非离子水溶胶对甜味剂阿斯巴甜(APM)感官甜度的影响,并探索了其中的物理化学机制. 感官实验结果表明,高浓度的瓜儿豆胶和刺槐豆胶对阿斯巴甜的甜度有抑制作用,且随着水溶胶浓度的增高,达到高分子临界交叠浓度C*后,抑制作用更明显. 基于人工受体模型,利用等温滴定量热(ITC)技术发现,两种水溶胶存在条件下阿斯巴甜与受体模型相互作用的结合常数急剧减小. 另外,通过对甜味剂存在下非离子水溶胶的水分分布、扩散性质的考察,发现随水溶胶浓度增加,体系的结合水含量均增多,尤其是水溶胶浓度达到临界交叠浓度(C*)后增多的现象更明显;同时,分子的扩散也受到了阻碍,从而导致阿斯巴甜感官甜度的降低. 本研究表明,探索大分子水溶胶对甜味剂分子与受体结合差异性的影响、溶液中水分子的弛豫性质及赋存状态、结合体系的粘度及扩散性质的研究,为理解大分子水溶胶对甜味影响的物理化学机制提供更多的信息.
以动态光散射为主要手段研究了盐对羧酸盐Gemini 表面活性剂O,O'-双(2-月桂酸钠)-p-二苯氧(记为C12φ2C12)自组织的影响. 结果表明盐的加入很容易使C12φ2C12的网状聚集体转变为小(流体力学半径Rh,app约几纳米)和大(Rh,app>100 nm)两种尺寸共存的聚集体,1,6-二苯基-1,3,5-己三烯(DPH)探针增溶实验证实小尺寸聚集体为核-壳结构的似球胶束,流变学测量说明大尺寸聚集体可能已经是线型的核-壳胶束. 这种行为被归结为初始的网状聚集体不稳定,添加的反离子与C12φ2C12头基结合破坏了网状结构的亲水亲油平衡,促使了它们的转变. 盐效应规律表现为MgCl2>NaCl、Bu4NBr>Me4NBr>Et4NBr>Pr4NBr,这里Bu4NBr不遵循上述静电力顺序的原因是它提供了携带的丁基与C12φ2C12烷烃链疏水相互作用的附加力.
利用双锥法研究了表面活性剂十二烷基苯磺酸钠(SDBS)和十六烷基三甲基溴化铵(CTAB)对油田现场用部分水解聚丙烯酰胺(PHPAM)和疏水改性聚丙烯酰胺(HMPAM)溶液的界面剪切流变性质的影响,实验结果表明:HMPAM分子通过疏水作用形成界面网络结构,界面剪切复合模量明显高于PHPAM. SDBS和CTAB通过疏水相互作用与HMPAM分子中的疏水嵌段形成聚集体,破坏界面网络结构,剪切模量随表面活性剂浓度增大明显降低. 同时,界面膜从粘性膜向弹性膜转变. 低SDBS浓度时,少量SDBS分子与PHPAM形成混合吸附膜,界面膜强度略有升高;SDBS浓度较高时,界面层中PHPAM分子被顶替,吸附膜强度开始减弱. 阳离子表面活性剂CTAB通过静电相互作用中和PHPAM分子的负电性,造成聚合物链的部分卷曲,从而降低界面膜强度.弛豫实验结果证实了表面活性剂破坏HMPAM网络结构的机理.
研究了十二烷基胺盐酸盐(DAC)和十二烷基聚氧乙烯硫酸钠(AES)复配体系的表面性质与胶束化行为. 发现该体系在广泛的复配比例区间和温度区间内保持了极为优异的表面活性,测定了该体系的临界胶束浓度(cmc)与其对应的表面张力(γcmc)的具体值,并研究了温度、pH值和离子强度等环境因素对相关体系的影响.
利用阴阳离子表面活性剂复配技术,在克拉玛依油田实际油水体系中获得了超低界面张力. 通过添加非离子保护剂的第三组分,阴阳离子表面活性剂混合体系在克拉玛依油田回注水体系中的溶解度大大提高. 确定了相关体系能够获得超低界面张力的表面活性剂的浓度和混合的比例范围,在克拉玛依油田的多个实际油水体系中获得了具有较大复配比例和较低表面活性剂浓度的实际配方,其中部分体系油水界面张力可接近10-4 mN·m-1. 同时,这类阴阳离子表面活性剂混合体系具有很好的抗吸附能力,在石英砂吸附72 h后体系依然呈现优良的超低界面张力.
The mixed micellization behavior of an amphiphilic antidepressant drug amitriptyline hydrochloride (AMT) in the presence of the conventional anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) was studied at five different temperatures and compositions by the conductometric technique. The critical micelle concentration (cmc) and critical micelle concentration at the ideal state (cmcid) values show mixed micelle formation between the components (i.e., drug and AOT). The micellar mole fractions of the AOT (X1) values calculated using the Rubingh, Motomura, and Rodenas models show a higher contribution of AOT in the mixed micelles. The interaction parameter (β) is negative at all temperatures and the compositions show attractive interactions between the components. The activity coefficients (f1 and f2) calculated using the different proposed models are always less than unity indicating non-ideality in the systems. The ΔGmθ values were found to be negative for all the binary mixed systems. However, ΔHmθ values for the pure drug as well as the drug-AOT mixed systems are negative at lower temperatures (293.15-303.15 K) and positive at higher temperatures (308.15 K and above). The ΔSmθ values are positive at all temperatures but their magnitude was higher at T=308.15 K and above. The excess free energy of mixing (ΔGex) determined using the different proposed models also explains the stability of the mixed micelles compared to the pure drug (AMT) and surfactant micelles.
以无机金属盐为前驱体,采用环氧丙烷添加法结合CO2超临界流体干燥和热处理工艺,制备了不同锑掺杂浓度的二氧化锡(ATO)气凝胶. 所得气凝胶为深蓝色块体,平均密度约为600 mg·cm-3,锑掺杂浓度在5%到20% (x)之间. 电子显微镜图片显示ATO气凝胶的骨架由粒径约为数十纳米的颗粒堆积而成,而这些颗粒又由数纳米的初级球形颗粒构成. X射线衍射谱表明,样品的主要晶相为SnO2四方相金红石结构,锑的掺杂仅引起微小的晶格畸变. X射线光电子谱显示锡元素以+4价态存在,而锑则具有+3和+5的混合价态. 四探针电阻率测试仪的结果表明,ATO气凝胶的电阻率在2.7-40 Ω·cm之间变化,其中在锑掺杂浓度(x)为12%时具有最低电阻率.
采用自由基乳液聚合法和原位聚合法制备了包含聚苯胺均匀分散在正十八烷中的悬浮体系的交联聚甲基丙烯酸甲酯为囊壁的相变材料纳胶囊(NanoPCMs). 采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)、热重分析仪(TG)和广角X射线衍射仪(WAXD)等手段分别考察了成核剂聚苯胺的添加量对相变材料纳胶囊表面形态、结晶性能、热稳定性及结晶行为等的影响. 实验结果表明:包含有聚苯胺的相变材料纳胶囊,成核剂的存在对其形貌、粒径、包覆率和结晶行为影响较小,耐热性略有所降低,添加1.5 g 苯胺时生成的成核剂聚苯胺可以有效改善其过冷结晶行为.
构建负电性的基因载体、发展基于低分子量聚乙烯亚胺(PEI)的基因载体对基因传递研究具有重要意义. 本文基于低分子量聚乙烯亚胺(2 kDa)和油酸构建了负电性的基因载体. 它通过混合聚乙烯亚胺(2 kDa)、dsDNA和油酸胶束而自发形成. 该基因载体在血清中很稳定,细胞毒性非常低,可包封80%以上DNA. 通过1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇2000)]铵盐(DSPE-PEG)对其表面进行修饰,发现多达90%的基因可被细胞摄取.
通过阴离子聚合方法合成了环氧乙烷(EO)含量和分子量均相同的线型聚氧丙烯(PEO)-聚氧乙烯(PPO) (LPE)和X型聚氧丙烯-聚氧乙烯(TPE)嵌段聚醚,考察了它们在空气/水及正庚烷/水界面上聚集行为的差异. 界面活性的研究结果表明,TPE降低水、正庚烷界面张力的效率和效能均低于LPE的. 聚醚分子在正庚烷/水界面达到吸附平衡的时间比在空气/水表面短. 由于正庚烷分子插入到聚醚吸附层中,聚醚分子可以在正庚烷/水界面上采取更为直立的状态,因此聚醚分子在正庚烷/水界面扩散较快. 聚醚在正庚烷/水界面的扩张弹性高于空气/水表面的.
采用H2O2-Vc氧化还原体系引发半纤维素衍生物,以表面修饰的Fe3O4粒子作为磁性组分,利用接枝共聚方法制备了新型半纤维素基磁性水凝胶. 分别用傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对水凝胶的结构及形貌进行了表征,利用X射线衍射(XRD)和振动样品磁强计(VSM)对水凝胶的晶型结构及磁性能进行了分析,发现Fe3O4粒子均匀分散在凝胶网络中,半纤维素基磁性水凝胶表现出良好的顺磁性. 考察了丙烯酸/半纤维素比例、Fe3O4粒子含量及交联剂用量对水凝胶溶胀性能的影响,并探讨了该水凝胶的溶胀机理,它在pH 8 缓冲溶液中的溶胀较好符合Fickian 和Schott 动力学模型. 通过SEM和溶胀性能分析表明,随着pH值的升高水凝胶的孔径增大,水凝胶的溶胀率逐渐增大. 制备的水凝胶被用于溶菌酶吸附研究,结果表明磁性凝胶的吸附量大于非磁性水凝胶,水凝胶的吸附行为符合Freundlich 和Temkin 等温模型.
以大环内酯类抗生素红霉素(EM)为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,十二烷基苯磺酸钠(SBS)为乳化剂,采用乳液聚合法制备了粒径均匀的分子印迹聚合物微球(EM-MIPMs). 通过核磁共振氢谱(1H NMR)、紫外光谱和傅里叶变换红外(FTIR)光谱对模板分子和功能单体形成的复合物进行了研究,结果表明EM与MAA之间的相互作用力为氢键作用. 利用扫描电镜(SEM)、热重分析(TGA)仪对EM-MIPMs 的形貌和热稳定性进行表征,结果显示EM-MIPMs 为均匀规整的球型,平均粒径为4.24 μm,且有良好的热稳定性. 同时采用动力学,平衡吸附和选择性吸附实验对其吸附性能进行研究. 动力学研究结果表明,EM-MIPMs的吸附速率符合准二级动力学方程. 利用Langmuir 和Freundlich 吸附等温方程分别分析了EM-MIPMs 的平衡吸附数据,结果表明,EM-MIPMs 对红霉素有良好的结合性能,其吸附过程符合Langmuir 吸附模型,饱和吸附量为0.242 mmol·g-1. EM-MIPMs的选择识别性能利用固相萃取法来考察,研究表明EM-MIPMs有着良好的特异识别选择性.
针对传统聚合物膜抗污染性差的问题, 本文从杂化膜结构设计出发, 提出将ZrO2纳米粒子的原位制备和聚偏氟乙烯(PVDF)相转化成膜过程有机结合的制膜新方法. 该方法将阴离子交换树脂引入到N,N-二甲基甲酰胺(DMF)中, 以氧氯化锆为原料, 利用阴离子交换树脂提供的―OH与无机盐的阴离子进行交换, 得到ZrO2纳米粒子均匀分散的N,N-二甲基甲酰胺溶胶体系. 随后将PVDF聚合物溶解到所得的N,N-二甲基甲酰胺溶胶体系中, 获得均一、透明的铸膜液. 利用X射线光电子能谱(XPS)和透射电子显微镜(TEM)对杂化膜中锆的存在状态和分散性能进行了表征. 结果表明, ZrO2纳米粒子均匀分散在PVDF基体中, 并且形成的纳米粒子的粒径约为10-20 nm. 通过粘度、分相速度和膜形态的测定, 研究了成膜机理. 结果表明, ZrO2纳米粒子的引入加速了铸膜液成膜过程的分相速度. 杂化膜的亲水性能通过接触角测定仪进行了评价. 并选择以牛血清蛋白为代表模拟污染物, 考察了杂化超滤膜的抗污染性能. 结果表明, 原位形成的ZrO2纳米粒子显著提高了膜的亲水性, 减少了膜对蛋白质的吸附. 这种将ZrO2纳米粒子的原位制备和PVDF相转化成膜过程有机结合的制膜新方法在有机-无机杂化膜的制备领域具有显著意义.
Gemini表面活性剂(CsH2s-α,ω-(Me2N+CmH2m+1Br-)2,m-s-m)与胆汁酸盐(BS)利用静电作用构建超分子复合物,通过改变m-s-m和BS的结构,可以分别得到纳米纤维和囊泡状超分子聚集体.聚集体的形貌、结构和性质分别通过偏光显微镜(POM)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FE-SEM)、X射线粉末衍射(XRD)及其它测试手段进行了表征.研究发现,通过改变m-s-m的烷基链长和间隔基团的长度,以及BS胆甾骨架上羟基的数目和位置,聚集体的形貌会发生明显的变化,聚集体主要依靠静电相互作用,并在疏水作用及氢键的协同作用下形成,本文的结果将有助于更好地理解离子自组装机理,并对超分子聚集体的设计提供新的思路.
设计合成了3种以丙二胺为连接臂(L)、苯环为A单元的A(LS)2型双胆固醇(S)类小分子胶凝剂: 化合物1(邻位), 化合物2(间位)和化合物3(对位), 考察了其在30种溶剂中的胶凝行为. 结果表明, 苯环取代位置的不同对化合物的胶凝性质有决定性影响. 就胶凝溶剂的数量来讲, 对位取代的化合物3的胶凝能力明显高于邻位和间位取代的化合物1和2. 此外, 化合物2和3可以形成5个室温胶凝体系, 且化合物3/二甲苯凝胶透明、柔韧,以至于可以形成超分子薄膜. 傅里叶变换红外(FTIR)光谱和核磁共振氢谱(1H NMR)研究表明, 胶凝剂分子之间的氢键和π-π堆积作用在凝胶形成过程中发挥了一定的作用. X射线衍射(XRD)研究表明在化合物1/苯凝胶中, 胶凝剂分子聚集为六方堆积结构, 进而形成贯穿整个凝胶体系的网络结构.
利用悬挂滴方法研究了Gemini季铵盐表面活性剂(C12-Ph-C12和C12-8-C12)和阿拉伯树胶的界面张力和界面扩张流变性质, 考察了阿拉伯树胶对C12-Ph-C12和C12-8-C12溶液界面张力和界面扩张流变性质的影响. 研究结果表明, 1%(w)阿拉伯树胶的加入显著降低了C12-Ph-C12和C12-8-C12的界面张力, 但是界面扩张模量增加,这一变化主要是由于阿拉伯树胶分子与Gemini季铵盐表面活性剂分子通过静电相互作用形成复合物. 文中提出了不同结构Gemini季铵盐表面活性剂与阿拉伯树胶分子在界面排布的示意图.
分析并计算了纳米结构表面上冷凝液滴按照不同途径长大的过程中液滴能量的增加速率, 并以能量增加最小为判据来确定液滴的生长途径. 结果表明, 纳米结构内形成的冷凝液斑在初期按接触角(CA)增加的模式生长时, 其能量增加速率远低于其它模式, 于是, 初始液斑先按增大接触角、并保持底面积不变的模式生长, 直至液滴达到前进角状态. 此后, 沿接触角增加的模式长大所导致的能量增加速率开始远高于其它生长模式, 于是液滴三相线开始移动, 底面积开始增加, 但接触角保持不变. 液滴所增加的底面积可以呈润湿或复合两种状态, 分别形成Wenzel 液滴及部分润湿液滴, 前者的表观接触角一般小于160°, 而后者则明显大于160°. 液滴的生长模式及其润湿状态均与纳米结构参数密切相关, 仅当纳米柱具有一定高度、且间距较小时, 冷凝液滴才能呈现部分润湿状态. 最后, 本模型对纳米结构表面上冷凝液滴润湿状态的计算结果与绝大部分实测结果相一致, 准确率达到91.9%, 明显高于已有公式的计算准确率.
在β-环糊精作保护剂条件下, 制备了高对称的十八面体四氧化三铁(Fe3O4)纳米材料. 通过胶体化学方法, 合成了一系列不同起始计量比的聚乙二醇(PEG)和Fe3O4纳米粒子复合物(CM-1-CM-4). 这些PEG复合材料展示出重要特性: 首先, 它们的表面形貌依赖于Fe3O4的计量; 其次, PEG的熔化过程受Fe3O4的影响, 并且直接与Fe3O4的含量相关; 进一步研究表明, 除CM-4外, Fe3O4的引入导致PEG结晶度下降, 而且Fe3O4纳米粒子量越少, 降低幅度越大; 更为有趣的是, PEG的降解过程受制于Fe3O4纳米粒子的影响, 导致不同降解产物的出现; 而且, 与纯Fe3O4纳米粒子一样, 复合材料中的Fe3O4也显示典型的软铁磁性行为, 但饱和磁化强度相对较小; 此外, X射线光电子能谱(XPS)实验揭示在这些PEG复合材料中, 有从Fe到O的电子转移, Fe电子密度的降低可用来解释复合材料饱和磁化强度的减小; 最后, 这些PEG复合材料呈现出对有机染料的表面增强拉曼效应, 并且这种效应随Fe3O4纳米粒子含量的增加而增加. 这些结果将会对聚合物/无机纳米粒子复合材料的发展起到推进作用.
以频率扫描和稳态剪切实验研究了140 mmol·L-1羧酸盐gemini 表面活性剂(C14Φ2C14)在100 mmol·L-1 NaBr 条件下溶液的流变行为. 在低剪切频率时, 溶液呈现出具有单一松弛时间特性的Maxwell 流体行为.通过活的高分子模型(living polymer model)分析,C14Φ2C14体系在25℃ 时形成了很长的蠕虫胶束(3.6-6.8μm). 冷冻透射电镜也观察到蠕虫胶束的形成. 这些胶束相互缠绕, 形成了很黏稠的溶液(零剪切粘度高达1.10×104 Pa·s), 外观呈现胶状. 随着温度升高至70℃, 体系的相对粘度仍旧保持很高(1.8×104), 这在阴离子表面活性剂蠕虫胶束溶液中是很少见的. 体系的流动活化能(Ea)约为(141±5) kJ·mol-1. 利用动态光散射测定了C14Φ2C14聚集体的尺寸分布, 证实了这个表面活性剂在5-10 mmol·L-1的低浓度时生成了约100 nm的大聚集体, 这些大聚集体随着表面活性剂浓度的增加很容易转化成棒状直至蠕虫胶束.
合成了三种不同聚氧丙烯/聚氧乙烯(PPO/PEO)比例的含苯环支状嵌段聚醚, 通过界面张力、界面流变、表面压以及对原油乳状液的破乳脱水效果的测定, 考察了其界面聚集行为和破乳作用对PEO含量和分子量的依赖性, 并且对比研究了三种支状聚醚分子交联前后的破乳性能. 结果表明, PEO含量高且分子量大者,其单分子界面占据面积大, 在油/水界面达到吸附平衡的时间短, 其油/水界面扩张模量及扩张弹性均高于PEO含量较少者. 但是对原油乳状液的破乳脱水效果则是PEO含量居中的聚醚最好. 温度影响和交联与否的研究表明, 交联并不能提高分子量较大的聚醚对原油乳状液的破乳效果, 温度对聚醚分子交联前后的破乳效果有不同的影响规律. 本研究可为原油集输过程中化学品的选择与应用提供一定的依据.
胶体溶液中带电胶粒的有效电荷是计算粒子间相互作用势的一个重要参数. 在本文中用电导率-粒子数密度关系法和电导滴定法分别研究了七种粒径及表面带电情况均不相同的聚苯乙烯粒子, 结果显示两种测量方法得到的有效电荷数值具有较好的一致性, 误差在7%以内. 同时发现, 经验公式计算的有效电荷差不多是实验值的2倍, 表明文献中的经验公式对于本文所研究的胶体粒子体系不适用.
以阴离子天然大分子透明质酸(HA)和阳离子单体甲基丙烯酸二甲氨基乙酯(DM)组成带相反电荷的聚合物/单体复合体系, DM通过水相原位聚合可制备荷正电的聚甲基丙烯酸二甲氨基乙酯(PDM), PDM与HA间的静电作用可诱导两者在水溶液中进行自组装, 得到HA/PDM复合胶体粒子. 用傅里叶变换红外(FTIR)光谱仪对HA/PDM复合物结构进行了表征. 用动态激光光散射(DLS)研究了HA与PDM复合体系在水溶液中的自组装行为, 并表征了反应时间对HA/PDM复合胶体粒子粒径的影响. 利用透射电镜(TEM)表征了胶体粒子的形貌. 考察了溶液pH 对胶体粒子粒径及zeta 电位的影响, 并对胶体粒子的乳化性能进行初步探索. 结果表明:DM单体聚合前, 无HA/DM复合物聚集体形成; 而随着DM的逐步聚合, HA与PDM可通过静电作用逐渐组装形成球状HA/PDM复合胶体粒子, 其粒径随反应时间延长逐渐减小并趋于稳定. 同时, 该复合胶体粒子具有pH敏感性和乳化性, 乳化性能较纯HA和PDM有较大提高.
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)、十六烷基聚氧乙烯醚羟丙基季铵盐(C16(EO)3PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)、十六烷基聚氧乙烯醚羟丙基羧酸甜菜碱(C16(EO)3PB)溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势. 研究发现: 低浓度条件下表面活性剂分子可能以平躺的方式吸附到固体界面, 且亲水基团靠近固体界面, PMMA表面被轻微疏水化; 在高浓度时则通过Lifshitz-van der Waals 作用吸附, 亲水基团在外, PMMA表面被亲水改性. 聚氧乙烯基团(EO基团)的引入对阳离子表面活性剂的接触角影响不大; 而含有聚氧乙烯基团的两性离子表面活性剂在PMMA界面上以类似半胶束的聚集体吸附, 大幅度降低接触角.
研究了两性离子配体修饰的金纳米颗粒在酸性和碱性溶液中的稳定性和可逆聚集性. 测量了金溶胶在不同条件下的UV-Vis 吸收光谱, 通过光谱的变化揭示其稳定性和可逆聚集性. 结果表明: 经配体修饰的金纳米颗粒在酸性和碱性溶液中的稳定性有了很大的提高; 强酸性条件可诱导金溶胶失稳聚沉, 回调pH值又可使其重新分散. 利用这种pH依赖的可逆聚集特性, 可以将稀溶胶浓缩成浓溶胶或固体保存, 一旦需要又可加水恢复到分散的状态.
以不同交联度、溶胀程度的双亲无规共聚物聚[(苯乙烯-alt-马来酸酐)-co-(7-对乙烯基苄氧基-4-甲基香豆素-alt-马来酸酐)](PSMVM)胶束作为聚合物胶束乳化剂稳定甲苯/水体系, 重点研究光交联度对胶束结构及其乳化性能的影响. 结果表明, 胶束交联度、溶胀度和荷电性对胶束结构及乳化性能有较大影响.
以苯乙烯(St)和甲基丙烯酸二甲氨乙酯(DMAEMA)为共聚单体, 通过普通自由基溶液聚合合成了双亲性无规共聚物P(St-co-DM). 用傅里叶变换红外(FTIR)光谱、核磁共振氢谱(1H NMR)、凝胶渗透色谱(GPC)和差示扫描量热(DSC)仪对聚合物结构进行表征. 研究了共溶剂的性质对P(St-co-DM)自组装胶束结构及其乳化性能的影响. 用透射电镜(TEM)和动态激光光散射(DLS)表征了自组装胶体粒子的形态、粒径大小及其分布. 通过测量胶束在甲苯/水界面的接触角表征胶束表面性能. 结果表明: P(St-co-DM)以四氢呋喃(THF)为共溶剂自组装时, 胶束的临界聚集水含量较大, 胶束表面亲水性较强, 流体力学半径较大; 用二氧六环或THF为共溶剂, 水为选择性溶剂, P(St-co-DM)自组装可以得到外层松散、内层比较密实的球状胶束, 用N,N-二甲基甲酰胺(DMF)为共溶剂时, 胶束整体呈现比较密实的球状胶束; 分别用DMF、二氧六环和THF为共溶剂制备的胶束, 其接触角均值都小于90°, 可形成O/W型(水包油型)乳液. 乳化实验结果表明, 以二氧六环和THF为共溶剂制备的胶束作为颗粒乳化剂制备的乳液性能较好.
两亲聚合物奇异的功能特性源于分子独特的骨架结构和在溶液中的自组装聚集行为. 本文向以2-丙烯酰胺基-十二烷基磺酸(AMC12S)与2-丙烯酰胺基-2-甲基丙磺酸(AMPS)进行无规共聚所制备的AMPS-AMC12S刷型两亲聚合物溶液体系中引入不同用量的NaCl, 采用稳态荧光、动态光散射(DLS)和透射电子显微镜(TEM)系统考察NaCl 对聚合物聚集行为的调控作用. 研究发现, 聚合物结构中疏水侧链含量越低, NaCl 对聚集行为的调控作用越强; NaCl浓度增加会明显降低聚合物的临界聚集浓度; 与此同时, 聚合物分子链自组装由分子间的聚集方式向分子内的聚集方式转变, 形成的聚集形态由大型多分子聚集体变化为尺寸数百分之一的单聚体.
采用乳化水加油法, 以正丁酸乙酯为溶剂, 曲拉通X-100 (TX-100)、十二烷基苯磺酸钠(SDBS)为表面活性剂, 正丁醇为助表面活性剂, 制备水基型氯氰菊酯微乳剂. 通过相图法、负染电镜、电导率、表面张力法、动态光散射、表面接触角测定等手段对所制备的氯氰菊酯微乳剂的结构和性质进行了表征, 研究了该微乳剂在杨福麦叶面的铺展动力学. 结果表明所制备的氯氰菊酯微乳剂为水包油型(O/W), 该微乳剂对氯氰菊酯有较好的增溶效应, 具有较低的接触角和表面张力, 液滴半径在45 nm左右; 微乳剂在杨福麦叶面的铺展动力学恰好符合二级动力学方程, 速率常数分别为0.1090 (°)-1·min-1 (20℃)和0.1572 (°)-1·min-1 (30℃), 活化能为27.03 kJ·mol-1.
利用MPTC型气泡压力张仪研究了十二烷基硫酸钠(SDS)溶液在不同NaCl 浓度下的动态表面吸附性质, 分析了离子型表面活性剂在表面吸附层和胶束中形成双电层结构产生表面电荷对动态表面扩散过程和胶束性质的影响. 结果表明, SDS在表面吸附过程中, 表面电荷的存在会产生5.5 kJ·mol-1的吸附势垒(Ea), 显著降低十二烷基硫酸根离子(DS-)的有效扩散系数(Deff). 十二烷基硫酸根离子的有效扩散系数与自扩散系数(D)的比值(Deff/D)仅为0.013, 这表明SDS与非离子型表面活性剂不同, 在吸附初期为混合动力控制吸附机制. 加入NaCl可以降低吸附势垒. 当加入不小于80 mmol·L-1 NaCl后, Ea小于0.3 kJ·mol-1, Deff/D在0.8-1.2之间, 表现出与非离子型表面活性剂相同的扩散控制吸附机制. 同时, 通过分析SDS胶束溶液的动态表面张力获得了表征胶束解体速度的常数(k2). 发现随着NaCl 浓度的增大, k2减小, 表明SDS胶束表面电荷的存在会增加十二烷基硫酸根离子间的排斥力, 促进胶束解体.
自行设计合成了新颖的苄胺型双链表面活性剂3,4-双十二烷氧基苄胺(DDOBA). 利用DDOBA/正丁醇/正庚烷/甲酸/HAuCl4·4H2O自发形成的水/油(W/O)型微乳液作为微反应器, 通过微波辐射下的甲酸还原法成功制备了DDOBA保护的憎水性金纳米粒子, 并通过紫外-可见(UV-Vis)光谱、透射电镜(TEM)、高分辨透射电镜(HR-TEM)和X射线衍射(XRD)等方法进行了表征和分析. 结果显示, DDOBA既可参与形成稳定的W/O型(油包水型)微乳液, 又可作为金纳米粒子的良好保护剂. 在合适的微乳液体系组成范围内, 用本实验方法可以获得高单分散性的憎水性金纳米粒子, 并能在空气/水界面上自动形成大面积短程有序的纳米金二维自组装膜.