由于正交相五氧化二铌(T-Nb2O5)为ReO3型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb2O5纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb2O5纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。
表面辅助的金属有机纳米结构因其结构稳定性和潜在应用受到广泛关注。在金属有机纳米结构中,金属原子来源于外部沉积的金属或金属表面原子。外部沉积的金属原子种类多样,取决于目标纳米结构。然而,金属表面原子受限于表面科学常用的金、银和铜单晶金属表面。金属有机纳米结构大多包括Au配位或是Cu配位结构,而只有少量的用表面Ag原子构成。分子金属相互作用的进一步研究有助于预期纳米结构的精确控制形成。至于构建基元,有机分子通过M―C、M―N和M―O键与表面金属原子配位。末端炔反应或者乌尔曼耦合能够实现C―M―C节点的形成。Cu和Au原子能够与含有末端氰基或吡啶基官能团的分子配位形成N―M―N键。另外,表面Ag增原子能够通过Ag―N配位键与酞菁分子配位。然而,M―O配位键的相关研究较少。因此,我们计划使用末端羟基分子与Ag增原子配位形成金属有机配位纳米结构去研究O―Ag节点。我们通过扫描隧道显微镜利用4, 4’-二羟基-1, 1’: 3’, 1’’-三联苯分子(4, 4’-dihydroxy-1, 1’: 3’, 1’’-terphenyl,H3PH)和Ag增原子成功构筑了一系列二维有序纳米结构。在室温下,蒸镀的H3PH分子自组装形成由环氢键连接的密堆积结构。当退火温度提升到330 K,一种新的纳米结构出现了,该结构由O―Ag配位键和氢键共同作用形成。进一步地提升退火温度至420 K,蜂巢结构和共存的二重配位链出现,这两种结构中仅由O―Ag―O键构成。为分析金属分子反应路径和O―Ag―O键的能量势垒,我们对该体系进行密度泛函理论计算。计算结果显示,O―Ag键形成的能量势垒是1.41 eV,小于O―Ag―O节点1.85 eV的能量势垒。这也解释了分等级金属-有机纳米结构形成的原因。我们的实验结果提供了一种利用有机小分子和金属增原子来设计和构筑分等级二维纳米结构的有效方法。
单层石墨烯已被证明对质子是可渗透的,而对其它原子和分子不可渗透,这一特性在燃料电池和氢同位素分离等方面具有潜在的应用。Geim等人报道了催化活化石墨烯膜质子传输的巨大光效应。其实验表明,光照和具有催化活性金属纳米颗粒的协同作用在这种光效应中起关键作用。Geim等人认为巨大光效应是由金属纳米颗粒和石墨烯之间产生的局部光电压引起的。局部光电压将质子和电子传送至金属纳米颗粒以产生氢气,同时将空穴排斥使之远离。但是,根据静电场理论,这种解释并不能令人信服,并且在他们的工作中也没有此效应的微观机理分析。我们在此文中提出了一种该现象背后的确切微观机制。对于具有半金属性质的石墨烯,光激发的大多数热电子会在皮秒时间内驰豫到较低的能态,而发生化学反应所需的时间一般为纳秒范围。因此,在单一石墨烯的情况下,入射光激发的热电子在与透过石墨烯的质子反应之前就已驰豫到较低的能态。当用金属粒子修饰石墨烯时,由功函数不同引起的电子转移会导致界面偶极子的形成。当金属为可与石墨烯具有相互强烈作用的Pt、Pd、Ni等时,就会形成局部偶极子。质子将被俘获在局部偶极子的负极周围,而电子则被俘获在正极附近。在光照射后,被俘获的电子会被激发到具有更高能级的亚稳激发态。处于高活化能的亚稳激发态的自由电子具有更长的寿命,使得它有更充分的时间与透过石墨烯的质子发生化学反应。对光照情况下高能电子的浓度的计算结果显示,光照越强时被激发到激发态的电子越多。根据本文的分析,质子通过催化活化石墨烯膜的巨大光效应归因于较长寿命的热载流子和快速的质子传输速率。因为这一反应的活化能没有变化,所以金属催化剂是通过增加反应物之间成功碰撞的次数来增大反应速率,从而产生显著的光效应。该工作可能揭示了催化剂在提高光(电)催化反应效率方面的一种新微观机制。
锂金属具有超高的理论容量(3860 mAh∙g−1)、低氧化还原电位(−3.04 V)被认为是最具前途的负极材料之一。然而,锂枝晶生长、以及“死锂”等问题阻碍了其实际应用。发展亲锂载体来调控锂成核行为是抑制锂枝的有效方法。本工作中我们采用石墨烯负载的氧配位钴单原子(Co-O-G SA)作为锂沉积载体,调节锂的成核和生长行为。Co-O-G SA具有均匀的亲锂位点、高电导率、以及高表面积(519 m2∙g−1),可显著降低锂沉积过程中局部电流密度,提高锂在循环过程中的可逆性。因此,基于Co-O-G SA锂负极在电流密度为1 mA∙cm−2,沉积容量1 mAh∙cm−2时具有99.9%的库伦效率和优异的倍率性能,在8 mA∙cm−2高电流密度下寿命达到1300 h。在对称电池中,Co-O-G SA锂负极(Co-O-G SA/Li)在1 mA∙cm−2的电流密度下,电压稳定在18 mV,寿命达到780 h。当匹配硫正极,获得全电池在0.5C (1C = 1675 mA∙g−1)的条件下,具有1002 mAh∙g−1的比容量,1000次循环过程中仅有0.036%的容量衰减率。本工作为通过调控单原子的配位环境来实现无枝晶锂负极提供了重要的见解。
金属锂具有最高的理论比容量(3860 mAh·g-1)和最低的还原电势(-3.04 V),是新型高能量密度电池负极材料的最佳选择之一。然而由于金属锂负极表面自发生成的固态电解质界面(SEI)十分不稳定,导致锂枝晶的产生和电池容量快速衰减,严重限制了锂金属电池的商业化应用。因此,本工作利用碳酸双(2, 2, 2-三氟乙基)酯(DTFEC)添加剂在三维锡锂合金/碳纸负极(SnLi/Cp)表面原位构筑了高机械强度和离子穿透性的含氟化物(LiF和SnF2)保护层,有效地改善了锂负极的倍率性能和循环稳定性。结果显示,SnLi/Cp对称电池在8 mA·cm-2的电流密度下经过100次循环后过电位仅为90 mV。当将电解液降低到12 μL (1.5 μL·(mAh)-1)时,在5 mA·cm-2的电流密度下对称电池仍具有优异的稳定性;SnLi/Cp‖NMC811电池在1C (1.5 mA·cm-2)条件下能稳定循环300圈以上,库伦效率高达98.1%。这种方法能够显著改善锂金属负极的循环稳定性,有助于实现高能量密度锂金属电池的实际应用。
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H+/Li+交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10 Ω·cm 2 ,对称电池能够在0.1 mA·cm-2的电流密度下实现长达1000 h的长循环稳定性。匹配正极LiFePO4(LFP)或LiNi0.5Co0.2Mn0.3O2 (NCM523)的准固态电池在室温下能够稳定循环100次以上。
由于能够实现高时空分辨的神经环路功能解析,微电极阵列已经成为了神经科学研究中的重要工具。然而,目前在自由活动动物中实施长期稳定的电生理记录仍然极具挑战。为此,我们研发了一种可自伸展的多通道电极阵列,并探讨了其应用于长期神经电生理记录的可行性和潜在优势。当电极植入后,其表面的水凝胶包裹层会迅速溶胀并溶解,随后电极阵列的记录通道会在脑组织中自行展开。由于分散的记录通道的直径较小,电极在长期植入后的组织反应显著减轻。得益于此,与传统的四电极(tetrode)相比,这种自伸展电极在长期植入后的界面阻抗显著降低,电生理信号质量更好。上述特性将受益于活体水平的神经环路机制研究。
不饱和烃类如二烯烃和炔烃催化转化为单烯烃是制药和有机合成领域中的重要反应。催化剂的理性设计在实现这一过程中起到关键作用,而控制二烯烃分子的吸附姿态是常用的策略。对金属纳米颗粒的定向修饰可以实现这一策略。例如,将Bi元素引入Rh纳米颗粒后,RhBi/SiO2在1, 4-己二烯的转化率为95%时对于2-己烯的选择性达到90%,这是因为1, 4-己二烯内部C=C键的吸附受到抑制。但是,这种策略却大大降低了纳米颗粒的活性,未修饰的Rh/SiO2比RhBi/SiO2的活性高了约27倍。二烯烃分子的吸附姿态也可以通过在金属纳米颗粒周围构筑多孔孔道来调控。例如,金属有机骨架(ZIF-8)或中孔二氧化硅(MCM-41)包裹的贵金属纳米颗粒对末端C=C键的加氢具有很高的选择性。然而,这些催化剂的热/水热稳定性却并不能令人满意。相比之下,沸石却具有非常高的稳定性,但却较少用于半加氢反应。我们最近发现,固定在沸石晶体(例如ZSM-5和Beta)中的金属纳米颗粒可以有效地选择加氢多取代的化合物。受这些工作的启发,我们通过转晶合成方法将Rh纳米颗粒封装在CHA沸石晶体中。这种催化剂首先是将Rh物种引入到Y沸石中(Rh@Y),然后在水热条件下将Y沸石转化为CHA沸石而合成的。XRD图谱,N2吸附等温线,SEM和TEM照片以及探针反应均表明Rh纳米颗粒是封装在CHA沸石晶体内部的。和设想的相同,Rh@CHA催化剂对二烯烃的氢化具有很高的选择性。在催化1, 4-己二烯加氢反应过程中,Rh@CHA给出了86.7%的2-己烯选择性和91.2%的1, 4-己二烯转化率。在同样条件下,常规方法制备的Rh纳米颗粒催化剂(Rh/CHA)的2-己烯选择性仅为37.2%。考虑到Rh@CHA和Rh/CHA具有相同的CHA沸石晶体和相似的Rh纳米颗粒尺寸,Rh@CHA催化剂的高选择性主要归因于二烯烃分子在CHA沸石的微孔孔道控制下只能以直立的姿态吸附在Rh纳米颗粒上。本文的工作表明,具有核-壳结构的沸石封装金属纳米颗粒催化剂对于催化二烯烃选择加氢具有较好的效果。
聚碳酸酯具有较高的介电常数和较强极性的碳酸酯基团,是一类高性能的聚合物固态电解质,但是它在全固态钠离子电池体系中的研究非常少。本文以简便的方法成功制备出了聚碳酸丙烯酯基全固态聚合物电解质,并研究了该全固态电解质在以3, 4, 9, 10-苝四甲酸二酐为正极的有机全固态钠电池中的应用。这种全固态聚合物电解质在钠离子电池中的应用能够有效提高钠离子电池的安全性,防止过充、电解液泄露甚至爆炸等一系列不安全因素带来的隐患。结果表明:这种聚碳酸丙烯酯基全固态聚合物电解质在室温下具有较高的电导率,并且循环前后的阻抗测试说明了该电解质与有机正极具有良好的兼容性。取代了传统液体有机电解液后,该全固态钠电池在室温下展示出了优异的循环性能,循环50周后,容量保持率为99.1%;然而,同类型的液体电池遭受了严重的容量衰减,循环50周后容量只有24.6 mAh·g-1,容量保持率仅为20.5%。
本工作采用超声辅助液相剥离法制备锑烯量子点,研究了在180 W、10 h的超声工艺条件下,分别以H2O、C2H5OH、N-甲基吡咯烷酮(NMP)为剥离溶剂得到的样品形貌。以分散浓度及稳定性为标准,评估了三种溶剂在锑烯量子点制备中的优劣。结果表明,锑烯样品在NMP中分散浓度最高且最为稳定。透射电子显微镜(TEM)的结果显示,只有NMP中的样品在形貌上呈现出来的是量子点,而其他两种溶剂中得到的样品主要是锑烯纳米片,所以NMP是最适合锑烯量子点制备的溶剂。此外,我们还标定了以上三种溶剂中锑烯样品浓度与比浊度的标准曲线,从而可以通过比浊法方便地测定锑烯分散液的浓度。
吡啶酮是一类重要的含氮杂环骨架,广泛存在于天然产物和药物分子中,是重要的化学转化中间体,其合成与修饰是现代医药学及化学领域的研究热点之一。杂环母核的官能团化修饰是该类化合物较为常见的衍生方式,但要求特定位点的反应基团预组装。相较而言,两个片段分子的直接偶联环化,是更为直接且具备较高实用性的合成类似杂环分子库的方式。近年来,过渡金属催化的丙烯酰胺与炔烃的氧化偶联制备吡啶酮类化合物取得了长足进展,关键活化步骤为过金属催化剂对酰胺β位sp2碳氢键的活化。然而,通过对更加易得的烷基酰胺进行sp3碳氢键活化制备杂环骨架依然具有较高的挑战性。其原因主要在于较低的α-酸性使得酰胺的脱氢反应变得异常困难。本课题组最近报道了温和条件下,铱催化的酰胺、酸及酮的空气脱氢反应。反应中产生的烯丙基-铱中间体被认为提高了酰胺的α-酸性,从而加速了脱氢过程。在此基础上,我们报道一种铑(III)催化的γ, δ-不饱和酰胺与炔烃类化合物的脱氢环化新方法,制备一系列多取代的吡啶酮类化合物。催化循环历经酰胺导向铑(III)对底物β位点的sp3碳氢活化,进而脱氢生成共轭的双烯酰胺中间体,随后酰胺基团再次导向铑(III)对β位的sp2碳氢活化,进而与炔烃进行插入,环化获得吡啶酮。该反应对各种官能团具有较好的容忍性。γ-烯基结构不但促进第一步的酰胺脱氢,而且是杂环产物后修饰的重要位点。机理实验表明双烯酰胺的确为反应中间体之一。核磁实验显示酰胺脱氢迅速,而控制实验则表明炔烃的插入过程的选择性与其电性有密切的关系,有可能参与了该反应的速控步。
本文利用原位液体室透射电子显微镜实时观察了液态下金纳米棒/石墨烯复合物的动态自组装行为。结果表明,由于电荷吸引力,金纳米棒倾向于通过尖端接近方式靠近石墨烯的边缘。组装结构形成以后,金纳米棒与石墨烯边缘可以发生相对旋转,其中金纳米棒边缘贴合石墨烯边缘的结构更稳定,并且没有显示金纳米棒与石墨烯边缘之间的相对角度随时间的变化。观察到了自组装结构的漂移运动,与较小尺寸的自组装结构相比,较大尺寸的结构显得更难以通过液体流动推动运动,并且其运动更容易因为来自液体室窗口基底的阻力而慢下来。利用液体室透射电镜进一步观察石墨烯折叠结构,观察结果表明折叠结构可随时间在液体中打开和闭合,导致固定在石墨烯层上的金纳米棒表现出与石墨烯之间的明显相对位置变化。总体上,自组装结构非常稳定,并且在液体中没有表现出任何的分离行为。进一步,将金纳米棒/石墨烯复合物用作催化剂,在4-硝基苯酚催化还原实验中显示出比单纯金纳米棒更好的催化性能。投料质量比为1 : 5的金纳米棒/石墨烯复合物表现出最佳性能,表观速率常数值为0.5570 min−1,是单纯金纳米棒的8倍。这一显著改善与优化稳定的金纳米棒/石墨烯复合物结构密切相关。原位液体室透射电镜为分析液体中复杂的自组装行为,及未来的高性能复合催化剂材料的开发,提供了一种强有力的表征方法。
有机小分子电子受体材料的侧基能够影响异质结有机太阳能电池的给体/受体匹配和器件性能。我们设计并合成了一个硼原子带有噻吩侧基的有机硼小分子(MBN-Th)。该分子的LUMO离域在整个骨架上,HOMO定域在中心核上,其独特的电子结构使该分子具有两个强的吸收峰(波长分别为490和726 nm),因此分子具有宽的吸收光谱和强的太阳光吸收能力。与苯基侧基相比,噻吩侧基使分子的HOMO能级下移0.1 eV,LUMO能级保持不变,进而引起分子带隙减小和吸收光谱蓝移20 nm。基于该有机硼小分子受体材料的异质结有机太阳能电池,实现了4.21%的能量转化效率和300–850 nm的宽响应光谱。实验结果表明,硼原子上的噻吩侧基是调控有机硼小分子光电性质的有效方法,可以用于有机硼小分子受体材料的设计。
N@C60内嵌富勒烯是一种在量子科技领域有较高应用前景的分子。科学家们设计了一系列以内嵌富勒烯分子为基本量子单元的量子计算机模型,而构筑这样的模型具有极高的挑战。其中,由于内嵌富勒烯分子阵列的制备通常需要合适的衬底,而衬底与分子之间的相互作用会影响甚至破坏内嵌N原子的自旋信号。因此研究和理解衬底与内嵌富勒烯分子的相互作用具有重要的意义。本文制备了高质量的N@C60分子,并采用扫描隧道显微镜对其在Au(111)表面的结构及电子态进行表征。通过对比N@C60分子在Au(111)、Si(111)、SiO2表面的电子自旋共振(ESR)信号随时间及其抽真空处理的变化,表明Au原子的核自旋与内嵌N原子的电子自旋的耦合作用是Au(111)表面N@C60单分子层的ESR谱中内嵌N原子的信号衰减的主要原因。
电化学方波伏安及循环伏安测量表明,钙钛矿CH3NH3PbI3晶体在有机电解质中的氧化还原过程伴随着化学降解。该化学降解源于CH3NH3PbI3晶体中铅离子的还原以及碘离子的氧化。通过电化学伏安法可以测定晶体的能带。
近年来,非富勒烯太阳能电池的发展迅猛。目前报道的高效率的非富勒烯稠环电子受体主要采用受体-给体-受体(A-D-A)型结构。本工作中,我们在给受体间引入3, 4-二己氧基噻吩作桥,用5, 6-二氯-3-(二氰基亚甲基)靛酮作端基设计合成了一种新的稠环电子受体(ITOIC-2Cl)。一方面,可以通过S···O和O···H等作用在分子内形成非共价键构象锁促进分子的平面性;另一方面,通过增加端基的缺电子性可以增强分子内的电荷迁移。在两者的协同作用下,ITOIC-2Cl的光谱吸收拓宽到近红外区,这有利于获得宽的光谱响应。将ITOIC-2Cl与一种吸收互补的给体聚合物(PBDB-T)共混制备活性层,我们用原子力显微镜(AFM)和透射电子显微镜(TEM)表征其形貌,发现共混薄膜可以形成纤维状的互传网络结构和合适纳米尺寸的相分离,这有利于电荷的分离和传输,从而获得高的短路电流(Jsc)和填充因子(FF)。最终,基于PBDB-T:ITOIC的电池,我们获得了9.37%的光电转换效率,其开路电压(Voc)为0.886 V,Jsc为17.09 mA·cm−2,FF为61.8%。这些研究结果为我们提供了一种设计高效率的非富勒烯稠环电子受体的有效的策略。
目前学界对Cu2Se低温α相的结构仍未认识清楚,而解决这一问题对理解Cu2Se在相变过程中热电性能提升等特性具有重要意义。本文首次报道了由球差校正扫描透射电镜(STEM)拍摄到的沿α-Cu2Se $ {{\left[ \bar{1}\bar{1}2 \right]}_{\text{c}}}$ 带轴的原子级分辨率高角环形暗场(HAADF)像,揭示了由Se原子以多种形式有序起伏产生的复杂结构。结合电子衍射图谱,分析了包含不同层数、通过相互组合构成α-Cu2Se晶体的多种结构变体。使用QSTEM软件对构建的结构变体进行高分辨图像模拟,得到了与实验对应的HAADF像。该工作为更全面地理解α-Cu2Se的结构提供了新的重要信息。
借助原位液体透射电镜,我们观察并研究了钯纳米棒溶液环境下的氧化刻蚀的微观行为及机理。通过改变钯纳米棒所处的液体环境,有效地控制了钯纳米棒的氧化刻蚀行为。由于端部具有较高的反应活性,钯纳米棒在氯化铁溶液中的氧化刻蚀会选择沿着轴向进行,具有明显的各向异性。当反应在超薄液层进行时,钯纳米棒的氧化刻蚀会变为准各向同性。这种行为是由于超薄溶液中溶解产物以及氧化物的扩散被抑制,在纳米棒端部选择性发生的氧化刻蚀会受到阻碍。最后,我们发现在钯纳米棒端部选择性沉积金,可以保护纳米棒的端部不受氧化,从而能控制刻蚀沿着钯纳米棒的径向进行。本文的研究结果对贵金属纳米晶的结构参数的精确调控以利于实际应用具有重要的意义。
生物电化学系统(BESs)的核心是生物膜在电极/溶液界面的电子传递反应,研究生物膜微区环境中的电子传递有助于阐明微生物的胞外电子传递(EET)机制,从而有针对性地提高BESs中的电子转移效率。微生物的EET机制包括直接电子传递和间接电子传递,由于生物膜组成复杂,含有多种分泌物、胞外聚合物等,常规电化学方法只能从生物膜宏观层面研究EET机制,无法有效区分这两种电子传递途径的贡献。本文采用电化学循环伏安方法研究了电子穿梭体二茂铁甲醇(FcMeOH)与希瓦氏菌(Shewanella)相互作用的界面过程;基于扫描电化学显微技术构建了穿透模式,通过微电极介导FcMeOH与Shewanella反应,收集仅来自间接电子传递途径产生的电流,同时测定了Shewanella在电极/溶液界面的氧化还原性质和空间分布。本论文将电化学扫描探针显微技术应用于EET的研究,从物理化学角度揭示微生物在代谢过程中与外界的电子传输机制。
非富勒烯太阳能电池目前已经成为有机太阳能电池的研究热点,大量的共轭电子受体分子被开发,并成功应用到高性能光伏器件中。共轭分子作为非富勒烯电子受体,需要综合考虑吸收、能级、电子传输以及结晶性等,其中宽吸收光谱可以提高对太阳光谱的利用,是分子设计中重要因素之一。本工作中,我们设计一种新型电子受体分子,以卟啉为核、萘酰亚胺为端基以及炔为桥连基团。这种新型分子具有近红外的吸收光谱以及合适的能级。将一种具有吸收互补的共轭聚合物为电子给体,星型分子为电子受体应用到电池的活性层中,我们获得了1.8%的能量转换效率,电池的光谱响应为300–900 nm。实验结果证明了这种以卟啉为核的分子设计在实现近红外吸收的电子受体方面具有重要应用前景。
绝大部分物质具有热胀冷缩的基本性质,然而近年来的研究发现一些化合物具有反常的负热膨胀性质,其为有效调节物质热膨胀系数(CTE)提供了可行性,尤其调控各向同性化合物热膨胀性质是一个重要的研究方向。本文以双ReO3结构的固溶体(Fe1-xNix)ZrF6为研究对象,对(Fe1-xNix)ZrF6固溶体的制备、晶体结构以及热膨胀调控开展了深入研究。(Fe1-xNix)ZrF6固溶体呈现全程固溶特性,通过Ni2+对Fe2+进行化学替代的方法实现了(Fe1-xNix)ZrF6热膨胀系数在大范围内的有效调控(−3.24×10−6– +18.23 × 10−6 K−1,300–675 K),尤其,在(Fe0.5Ni0.5)ZrF6化合物中得到了零膨胀性能。作为一种典型的框架结构化合物,晶胞中F原子横向热振动的差异是导致各自不同热膨胀差异的本质原因。该研究给我们提供了一个基于开放式框架结构化合物的热膨胀调控方法。
硅基锂离子负极材料在脱嵌锂离子的过程中显著的体积效应导致活性材料的粉化、固体电解质介面膜(SEI)的持续生长和电接触的丧失并最终导致电池的失效。本文报道了一种新型的磷烯(单层黑磷)包覆来提升硅基负极材料的电化学性能。微量(1%,质量分数)的磷烯包覆有效抑制了被包覆硅颗粒的体积膨胀和SEI生长等问题,并保持了其电极结构在持续充放电循环中的完整性,从而提升了其库伦效率、容量以及循环稳定性。这是首次利用磷烯包覆法来提升硅基锂离子电池负极材料电化学性能的报道,而且也展现了此工艺在其他具有显著体积效应的电池材料中具有应用前景。
采用球差校正扫描透射电子显微镜(STEM)研究化学气相沉积法制备的二维MoS2(1-x)Se2x合金材料中Se元素掺杂、取代的微观过程和机理。定量和统计STEM表征结果发现:Se原子晶界处富集显著,晶界处Se元素含量远高于晶畴内部。进一步研究表明晶界中掺杂取代Se原子的浓度和分布与晶界结构密切相关。主要与晶界处的局域畸变及其诱导的反应活性有关。该结果对于二维过渡金属硫族化物合金体系的可控合成及应用拓展具有重要意义。
解决聚合物囊泡降解性和稳定性的矛盾是一个重要问题.本文通过可逆加成断裂链转移(RAFT)聚合和开环聚合(ROP)合成了一种聚[(N-异丙基丙烯酰胺-无规-7-(2-甲基丙烯酰氧基乙氧基)-4-甲基香豆素)-嵌段-(L-谷氨酸)] [P (NIPAM45-stat-CMA5)-b-PGA42]的两亲嵌段共聚物.囊泡膜由温敏性的聚N-异丙基丙烯酰胺(PNIPAM)和可光交联聚7-(2-甲基丙烯酰氧基乙氧基)-4-甲基香豆素(PCMA)组成.由囊泡膜向内外舒展的聚谷氨酸(PGA)链使囊泡稳定分散在水中,并且可进一步官能化.透射电子显微镜(TEM)和动态光散射(DLS)表征证实了囊泡的形貌和尺寸分布.本研究为制备基于多肽共聚物的可降解温敏囊泡提供了一个范例,并有望在纳米生物医药领域得到应用.
采用原位液体池透射电镜技术,在扫描透射电子显微镜(STEM)中,实时观察溶液中金属钯(Pd)在金(Au)纳米颗粒及团簇周围的异质沉积过程。通过对该动态过程的定量分析,结合高分辨透射电子显微镜(HRTEM)对样品进行形貌与结构表征,研究异质沉积的机理。结果表明,电子束辐照下Au-Pd异质结构纳米颗粒的形成存在两种主要机制:第一种机制中,Pd在Au纳米颗粒表面的生长是以岛状沉积开始,随着时间推移,出现Pd岛的结构弛豫和沿着Au颗粒表面的迁移扩展。伴随Pd的不断沉积和弛豫,Au-Pd复合颗粒的外接圆直径表现为震荡生长,而Au表面的Pd覆盖率显示出随时间单调增加的趋势。第二种机制中,由于Pd单体在Au纳米颗粒上的沉积位点有限,使部分被还原的Pd在Au颗粒以外区域进行同质形核与生长形成Pd团簇,之后再与Au颗粒上的Pd岛合并。进一步的结果分析显示,Au颗粒外围的Pd沉积体为多晶结构,由随机取向的Pd纳米晶粒构成。
开发了一类新型阳极界面缓冲材料PbI2,制备了结构为ITO/PbI2/P3HT:PC61BM/Al(氧化铟锡导电玻璃/碘化铅/聚三已基噻吩:富勒烯衍生物/铝)的器件,制备工艺包括旋涂和蒸镀,考察了PbI2在聚合物太阳能电池原型器件ITO/P3HT:PC61BM/Al中的效果。不同碘化铅浓度,退火温度,退火时间,对PbI2薄膜的质量都会有影响。很显然,高质量的PbI2薄膜将会带来好的光电转化效率。PbI2薄膜的透光性,结晶性,以及表面形貌可以用来描述所成薄膜的质量好坏。对能带来最好性能的碘化铅薄膜进行了紫外-可见光谱,X射线粉末衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM)等表征。实验发现,太阳能电池器件的效率对PbI2浓度比较敏感,最优化的条件为,旋涂浓度为3 mg·mL-1,100 ℃退火30 min,其电池的开路电压(Voc)达到0.45 V,短路电流密度(Jsc)为7.9 mA·cm-2,填充因子(FF)为0.46,与没有界面缓冲材料的器件相比,光电转换效率(PCE)由0.85%提高到1.64%。
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。
钙钛矿结构SrSnO3因其独特的介电和半导体性质而备受关注,通过掺杂可显著调控其电学、磁学性能,拓宽其应用范围。本研究在单晶SrTiO3(001)衬底上通过脉冲激光方法外延生长了SrSn1-xCoxO3 (x = 0, 0.16, 0.33, 0.5) (SSCO)薄膜,探究了Co含量对薄膜结晶性、微观结构、光学性能以及介电性能的影响。结果表明, SrSn1-xCoxO3薄膜可在SrTiO3(001)衬底上外延生长, Co掺杂不会导致薄膜结晶质量的劣化。薄膜表面形貌平整、致密,膜厚200 nm,表面粗糙度为0.44 nm。随薄膜中Co掺杂量增加,薄膜透过率从90%降至25%,光学带隙从4.24 eV降至2.44 eV。介电性能测试表明,掺杂薄膜在106Hz时介电常数为70.1,比无掺杂SrSnO3薄膜提高57%。室温时SSCO薄膜表面电阻率为172 MΩ,在1000℃范围内薄膜结构稳定。
制备了1-甲基-3-丙基咪唑硫离子液体电解质,并应用在量子点敏化太阳能电池中。通过优化S和Na2S的浓度,电解质的电导率在25℃下达到了12.96 mS·cm-1。差示扫描量热法分析表明离子液体电解质的玻璃化转变温度为-85℃。采用该电解质的量子点敏化太阳能电池在25℃下达到了3.03%的光电转化效率(η),与采用水基电解质的电池的效率3.34%接近。由于本文中的离子液体电解质具有低玻璃化转变温度和不易挥发的优点,采用离子液体电解质的量子点敏化太阳能电池在-20℃ (η=2.32%)及80℃ (η=1.90%)的温度下表现出了比水基电解质优异的光电转化性能。
热分析量热仪主要包括动态、等温、恒温及绝热四种操作模式。很多学者基于动态及等温模式的测试结果,采用Arrhenius速率常数进行动力学计算,进而发现了所谓的“动力学补偿效应”。为了解绝热模式下是否也存在动力学补偿效应,分别采用绝热加速量热法(ARC)及动态差示扫描量热法(DSC)研究了过氧化二异丙苯(DCP)、40%(质量分数,下同)DCP溶液、葡萄糖、45%葡萄糖溶液的热分解特性,在此基础上基于Arrhenius公式计算了对应的表观活化能E和指前因子A,并对计算结果进行了分析。结果表明:绝热模式下,不同质量的同种样品及其溶液的最佳动力学参数,或者同一组数据采用不同的反应级数获得的lnA和E之间均存在明显的线性关系。此外,尽管由动态DSC数据计算获得的E和lnA普遍小于绝热模式的结果,但两种模式下获得的lnA和E之间仍然存在动力学补偿效应。由此可以推断,具有相同或类似反应机理的反应,虽然实验模式不同,但其E和lnA之间存在明显的动力学补偿效应。
常压微等离子体电极是一种有望取代常用贵金属电极用于电化学反应的气体电极. 然而目前关于微等离子体阳极与离子溶液界面反应的研究及其用于金属电沉积的报道还较少. 本文使用常压微等离子体作为阳极, 通过紫外-可见吸收光谱监测阳极电解液中亚铁氰化钾被氧化生成的铁氰化钾的含量, 发现铁氰化钾的含量随放电时间的延长而增加, 并且其增加的速率与放电电流成比例. 在放电结束后, 随着放置时间的延长铁氰化钾的含量继续升高, 其升高的速率与放电时间的长短有关. 放电结束后铁氰化钾含量的增加速率远小于放电时的增加速率. 实验结果表明微等离子体电极可以作为气体阳极在等离子体和液体界面进行电荷传输, 并引发电化学反应, 同时在放电的过程中产生了氧化活性物质. 在饱和硫酸铜溶液中, 使用微等离子体阳极可以在不锈钢阴极上进行铜的电沉积, 电流效率达到90%.
为了解决年龄衰老、基因突变和癌症等问题, 理解DNA的氧化损伤机理非常重要. 本文利用密度泛函方法和极化连续介质模型在液相条件下研究了羟基自由基夺取鸟嘌呤-胞嘧啶(GC)碱基对上5 个氢原子的反应机理. 研究结果表明, 所有的脱氢反应路径都是放热过程, 热力学上五个脱氢反应路径形成自由基的稳定性顺序是(H2b-GC)·>(GC-H4b)·>(GC-H6)·>(GC-H5)·~(H8-GC)·, 其中H2b反应路径的能量变化最大, 说明该反应平衡时的转化率最高. 动力学上, 相对于反应复合物的局部反应能垒大小顺序是H2b
为理解Pt 纳米晶(NCs)表面上吸附与反应的结构效应, 本文利用电化学衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)初步研究了{100}优先取向的Pt 纳米晶表面CO电吸附和电氧化. 合成并清洗过的Pt 纳米晶在硫酸溶液中的循环伏安图出现了四对氧化还原峰, 其中位于0.26和0.36 V的峰分别对应于短程有序和长程有序Pt{100}上的氢吸脱附. 利用Bi、Ge 不可逆吸附法估算出Pt{100}和Pt{111}纳米晶筹分别占34% 和17%. 在原位红外光谱研究中, 首次分辨出线性吸附的CO (COL)物种在Pt 纳米晶的三个基础小晶面上的振动谱峰. 动电位光谱分析结果表明Pt{110}上吸附的COL优先电氧化, 其次{111}上的COL发生氧化, 而Pt{100}上COL氧化过电位最高.
报道了对苯二甲酸镁作为钠离子电池负极材料的研究. 以对苯二甲酸和氢氧化镁为原料,采用酸碱中和反应制备了含结晶水的对苯二甲酸镁(MgC8H4O4·2H2O),该材料对钠离子电池表现出了较好的电化学活性、优异的倍率性能以及良好的循环稳定性. 在0.5C(1C=300 mA·g-1)倍率下循环50 周以后,可逆容量由114mAh·g-1降至95 mAh·g-1,容量保持率高达83%;在2C的倍率下有高达90 mAh·g-1的可逆比容量. 另外,在氮气气氛中,400 ℃进行后续热处理得到了不含结晶水的对苯二甲酸镁(MgC8H4O4),探讨了结晶水对其电化学性能的影响. 结果表明,MgC8H4O4·2H2O的比容量、倍率性能以及循环稳定性都明显优于不含结晶水的对苯二甲酸镁.
迄今非接触原子力显微镜已经成为一个非常强大的工具. 它不仅能够得到表面的原子周期结构,还能给出分子内部的化学键信息. 针尖和样品之间的相互作用是原子力显微镜的有效信号,主要包括三种,即范德瓦尔斯相互作用、静电相互作用和化学键相互作用. 本文在生长于Si(111)-7×7 的铅薄膜上测量了针尖和样品之间的化学键相互作用. 通过获取该相互作用随偏压的变化,并且利用抛物线拟合有效局域接触势的位置,我们发现它是随着针尖和样品之间距离的增大而减小的. 这种趋势来自于针尖和样品之间波函数的交叠. 从而可以得到电子的衰减长度. 我们还测量到了该衰减长度随着铅薄膜厚度的变化会发生振荡,这种振荡归因于平顶楔形铅岛内电子的量子尺寸效应.
铜转运蛋白(CTR1)不仅参与铜的细胞摄取,而且在其它重金属离子的摄取过程中也发挥重要作用. 本文采用紫外-可见(UV-Vis)光谱,核磁共振(NMR)和质谱(MS)的方法,研究了人源CTR1 (hCTR1)的C端金属结合域(C8)与Ag+和Hg2+的相互作用. 研究表明,Ag+和Hg2+都能与C8结合,但二者与C8的结合机制明显不同. 每个C8分子可以结合两个Ag+离子,但一个Hg2+却可以与两个C8形成桥联. 此外,Ag+离子与C8的配位是一个中等速度的交换过程,而Hg2+离子则为快速交换过程. C8的半胱氨酸残基是两种离子的重要结合位点,同时组氨酸残基也参与两种金属离子的配位,其中Ag+优先结合组氨酸,而Hg2+则对半胱氨酸的结合具有显著的优势. 虽然HCH基序对C8 与金属配位至关重要,一些远端的其它氨基酸也可以参与C8 与银离子的配位,这可能与CTR1 在摄取Ag+过程中的金属转移机制相关. 这些结果为理解hCTR1 蛋白摄取重金属离子的作用机制提供了必要的信息.
本文制备了聚4-甲基丙烯酸-2,2,6,6-四甲基哌啶-1-氮氧自由基酯(PTMA)/石墨烯纳米复合材料,并报道了其作为可充镁电池正极材料的电化学性能.通过傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)、透射电镜(TEM)表征复合材料的结构和形貌;循环伏安和恒电流充放电测试其电化学性能.粒径10nm左右的PTMA颗粒分散在具有导电作用的石墨烯表面;在"一代"电解液Mg(AlCl2BuEt)2/四氢呋喃(THF)(0.25mol·L-1)中,22.8mA·g-1充放电电流密度下,PTMA/石墨烯复合材料的起始放电容量可达到81.2mAh·g-1.研究结果表明,含有自由基的有机化合物可以作为可充镁电池的一类新型正极材料,可以进一步通过使用具有高氧化分解电压的电解液来提高其放电容量.
采用分步溶胶-凝胶法制备的三元杂化催化剂TiO2-SiO2-杂多酸(POMs)在可见光降解工业染料罗丹明B中表现出了高效反应活性. 利用时间分辨微波传导(TRMC)和漫反射光谱(DRS)研究了催化剂在可见光区的光催化性能, 实验结果表明: 在三元杂化催化剂内, 二氧化钛和二氧化硅的键合加强了催化剂在可见光区的响应和吸收, 二氧化钛和杂多酸的结合提高了反应活性位(空穴-电子对)的稳定性. 三元杂化催化剂TiO2-SiO2-POMs中组分之间的协同效应促进了可见光光催化性能的提高.
采用脉冲激光沉积术(PLD)同质外延生长了表面原子级平整的6%(原子比)Cr 掺杂的金红石相TiO2(110)单晶薄膜, 采用扫描隧道显微镜(STM)、扫描隧道谱(STS)、X 射线光电子能谱(XPS)和紫外光电子能谱(UPS)对其进行了表征. 结果表明: Cr 掺杂对TiO2(110)-(1×1)表面的形貌没有明显影响, 但是提高了掺杂薄膜在负偏压的导电性; Cr与晶格O键合而呈现+3价态, 由此在TiO2的价带顶上方~0.4 eV处引入杂质能级. 紫外-可见光吸收谱显示薄膜的光吸收能力被扩展到~650 nm, 处于可见光范围. 借助STM以单个甲醇分子的光解反应检测了薄膜的光催化活性. 仅观察到紫外光照射下甲醇分子的脱氢反应, 在可见光照射下(λ>430 nm)甲醇分子没有发生反应, 表明单独的Cr掺杂可能不足以提高TiO2在可见光下的催化活性.
从单层和少层的石墨烯出发, 利用透射电子显微镜中的高能电子束辐照, 可控地制备了准二维完全无定形和半无定形碳结构. 用高分辨成像和相干的纳米区域电子衍射技术表征了样品结构在高能电子束辐照前后的变化. 基于实验记录的电子衍射花样得到了样品的原子对分布函数. 分析表明, 在所制备的准二维无定形结构中, 六元环不再是碳原子的主要排列方式, 碳原子的各阶最近邻间距相对于完美石墨烯中的值有所偏离并趋向无序; 同时还发现, 锯齿型的碳链结构不易被破坏, 并使得准二维无定形碳结构中还保留了短程有序和可达0.5 nm的中程有序.
通过将酸性功能化离子液体与对纤维素具有溶解作用的离子液体进行复合, 构建了一类新型的高效催化纤维素分解的体系, 并采用热重(TG)分析方法, 研究了复合离子液体中纤维素的分解行为. 结果表明: 复合离子液体中纤维素的分解温度明显降低, 溶于离子液体中的纤维素可被酸性离子液体原位催化分解. 纤维素的分解温度受离子液体催化剂的酸性及纤维素在复合离子液体中的溶解度影响明显: 酸性越强, 溶解度越大, 纤维素的分解温度越低.
一般来说, 点群理论认为Möbius带环分子最高的对称性只能是C2. 本文讨论了由18个苯环组成的环并苯的异构体分子, 包括柱面的Hückel型分子(HC-[18])和扭转180°的Möbius带环分子(MC-[18]). 结果表明除了点对称性外, Möbius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性, 为此还引用了环面正交曲线坐标系. 此外, 还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集. 根据TSR对称性的循环群特征, 可以建立此类群的不可约表示及有关特征标. 这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的, 然而所含的相应的原子轨道对称性匹配的线性组合(SALC-AO)成分可以是多种的.
采用多步恒电流沉积技术, 在铜箔上电沉积制备了多孔锂-硅薄膜电极(LSF). 用X射线衍射(XRD)和扫描电镜(SEM)测试手段研究了该电极的结构和表面形貌. 作为锂离子电池负极材料, 电化学测试结果表明锂-硅薄膜电极具有较好的循环稳定性, 通过改变电沉积条件, 可有效调控该电极的嵌脱锂容量及首次循环效率. 譬如, 在0.5 mol·L-1四氯化硅+0.7 mo·L-1高氯酸锂的碳酸丙烯酯电解液中, 首先以-3.82 mA·cm-2的恒定电流密度沉积600 s, 再将电流密度恒定为-1.27 mA·cm-2, 继续电沉积7200 s, 制得锂-硅薄膜电极(LSF-3), 该电极以12.7 μA·cm-2的电流密度预循环2次, 其首次循环库仑效率高达97.1%. 预循环2次后, 电流密度增加到25.5 μA·cm-2, 此时,锂-硅薄膜电极充电质量比容量和面积比容量分别为1410 mAh·g-1及240.6 μAh·cm-2; 50次循环后充电比容量为179 μAh·cm-2 (1049 mAh·g-1), 容量保持率为74.4%. 锂-硅薄膜电极中的活性锂组分可补偿首次循环时不可逆容量损失, 同时薄膜电极中的多孔结构可缓解电极材料的体积效应并改善其循环性能.
通过对电沉积法得到的Ni-Cu合金镀层进行电化学去合金化处理, 制备了纳米多孔结构金属镍膜. 采用循环伏安法对多孔金属镍膜在1 mol·L-1 KOH溶液中进行阳极氧化处理, 获得了纳米多孔结构的镍基复合膜电极. 应用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的膜电极的物理性质及赝电容特性进行了表征. SEM、XRD和XPS的测试结果表明, 所制备的纳米多孔结构镍基复合膜由Ni、Ni(OH)2和NiOOH组成. 电化学实验结果显示, 该复合膜在20 A·g-1的充放电电流密度下, 给出了578 F·g-1的初始比电容; 在1000次充放电循环后, 它的比电容值为544 F·g-1, 电容保持率为94%. 纳米多孔结构有利于KOH电解液的渗透, 从而促进反应物种在电极内部的传输; 纳米多孔的金属镍基体可以提高Ni(OH)2膜的电子导电性; 纳米大小的Ni(OH)2颗粒能够缩短质子的固相扩散路径. 上述因素是所制备的纳米多孔结构镍基复合膜电极具有优异赝电容特性的主要原因.
基于表面分子自组装和光催化转印技术, 在TiO2膜层表面获得超亲/超疏水阵列微图案模板, 结合电化学沉积技术, 成功制备了微图案化钙磷盐膜(CaP)层. 扫描电子显微镜(SEM)和电子探针分析(EPMA)结果表明, 通过超亲/超疏水阵列微图案模板可构筑高空间分辨的微图案化钙磷盐膜层. 微图案化钙磷盐膜层的体外MG-63细胞培养证实, 细胞对钙磷盐膜层微单元有强烈的选择性粘附作用, 从而可望控制细胞在微单元中的贴壁生长, 实现高通量评价细胞行为.
采用过氧化氢电极与电子自旋共振(ESR)技术对不同pH值条件下丹参素的自氧化及Cu2+对丹参素的促氧化反应机理进行了研究. 实验结果发现: 在碱性条件下(pH=8.5), 丹参素自氧化作用异常显著, 氧化首先生成O2-·, 随后可歧化为H2O2, 并且Cu2+对H2O2信号增强也起着显著的促进作用; 在弱酸性条件下(pH=6.5), 丹参素自氧化过程受到抑制, 主要表现为少许Cu2+的促氧化作用;而在生理条件下(pH=7.4), 丹参素的自氧化过程缓慢, 有少量H2O2生成, 并且Cu2+的促氧化作用非常有限. 因此, 当丹参素作为一种高效抗氧化剂药用时, 其自身的自氧化与金属离子促氧化作用都应有所考虑, 尤其在偏碱性体液中, 更易产生大量的超氧阴离子自由基, 并对生物机体造成某种损害.
采用注浆成型法制备了管状电解质支撑的固体氧化物燃料电池(SOFC), 电解质材料为YSZ, 阳极和阴极材料都采用银. 将活性炭不加任何气体直接用作电池的燃料. 电池的有效面积为2.5 cm2, 在800 ℃时给出最大功率为16 mW, 其开路电压随温度的变化与理论结果一致. 此电池在30 mA 的恒电流下连续稳定运行了37 h, 通过电化学反应消耗了加入电池中碳燃料的42%(w), 证明了电池的工作是可以自维持的. 与使用石墨燃料的SOFC相比, 此电池的运行稳定性得到了明显的提高, 因为活性炭比石墨具有大得多的微孔率和表面积. 电池运行37 h后很快衰减, 燃料烧结和燃料量减少造成碳表面积减小可能是衰减的主要原因. 电化学阻抗谱测试结果表明电池的极化电阻在电池的总损耗中占主导. 通过对电池反应机理进行分析, 认为发生在阳极/电解质界面的CO电化学氧化反应和发生在碳燃料表面的Boudouard反应构成的循环维持了电池的运行, 因此通过添加促进上述两个反应的催化剂, 可提高电池的性能.
研究了单根(7,5)蛇形单壁碳纳米管的拉曼光谱特征, 观察到了环呼吸振动峰(RBM)、环呼吸振动的倍频峰(2RBM)、介于中间频率的振动峰(IMF)、无规振动峰(D)、剪切振动峰(G)、中间频率振动峰(M)、剪切振动和环呼吸振动的和频峰(G+RBM)、面内横向光学声子和纵向声学声子的和频峰(iTOLA)、无规振动的二次共振峰(G'或者2D)以及其它一些归属不清楚的拉曼峰. 不同激发波长和不同激发偏振拉曼光谱研究表明, 这些拉曼光谱峰显示出了非常强的激发能量和激发偏振的选择性.
以双极性小分子4,9-二(4-(2,2-二苯乙烯基)苯基)萘并[2,3-c][1,2,5]噻二唑(BDPNTD)为发光层, 制备得到了单层非掺杂红色荧光有机发光二极管. 通过在阳极ITO与有机层BDPNTD之间插入1 nm厚的WO3或MoO3薄膜, 获得了单层有机发光二极管: 起亮电压为2.4 V, 最大发光亮度为4950 cd·m-2, 发光波长为636 nm, CIE坐标约为(0.65, 0.35). 这证明了作为修饰层的WO3或MoO3薄膜可以改进ITO/BDPNTD界面的空穴注入, 进而在器件中实现空穴与电子的平衡.
氟表面活性剂的环境和生物降解问题是最近的热点, 特别是全氟长链(≥C8)氟表面活性剂的应用限制乃至禁用已成为必然趋势. 本文合成了一种以短链的全氟丁基为基础的阳离子氟表面活性剂, N-[3-(二甲基胺基)丙基]全氟丁基磺酰胺盐酸盐(C4F9SO2NH(CH2)3NH(CH3)+2Cl-, 简称为PFB-MC). 该表面活性剂适用于强酸性环境, 具有极高的表面活性, 其溶液最低表面张力(19.80 mN·m-1)和通常的氟表面活性剂相当. 通过表面张力方法得到了固定pH(pH=2.6-2.7)情况下PFB-MC的表面张力-浓度对数(γ-lgc)曲线, 以及该pH下外加盐([NaCl]=0.1 mol·L-1)对表面张力的影响; 并进一步研究了pH对PFB-MC在其临界胶束浓度(cmc)前后的表面张力的影响.
为了克服脱嵌锂过程中体积变化引起的机械疲劳导致使用纯锡作为锂离子电池负极时锡的循环性能很差这一问题, 通过氧化铝(AAO)模板辅助生长方法制备了锡纳米棒电极. 用扫描电子显微镜, X射线衍射分析, 循环伏安和恒流充放电测试对锡纳米棒电极的结构和电化学性能进行了初步表征. 扫描电子显微镜观察显示, 铜集流体表面均匀分布着锡纳米棒, 锡纳米棒的平均直径约250 nm. 电化学测试结果表明, 锡纳米棒电极比平面薄膜电极具有更好的容量保持率和倍率性能. 在C/10充放电倍率条件下, 第10次循环的容量仍达到第一次循环的80%, 即使在1C倍率下, 容量仍高于540 mAh·g-1.
采用溶胶-凝胶法合成了一系列铁锰复合氧化物催化剂, 利用X射线衍射(XRD)对催化剂的活性相态进行研究, 并考察了铁锰摩尔比及焙烧温度对催化性能的影响. 结果表明, 该催化剂体系在低温(80-220 ℃)下选择性催化氨还原NOx反应中显示出优异的活性. 其中Fe(0.4)-MnOx(500)(即摩尔比n(Fe)/(n(Fe)+n(Mn))=0.4, 焙烧温度500 ℃)催化剂具有最佳低温催化活性, 在空速30000 h-1, 温度80 ℃的条件下, NOx转化效率达到90.6%, N2选择性达100%. Fe-MnOx复合氧化物催化剂中形成的Fe3Mn3O8晶相有利于促进NO氧化成NO2, 从而提高低温选择性催化还原的活性.
利用在样品表面上组装聚苯乙烯微球, 可以使得表面拉曼信号得到增强. 系统考察了增强效应与微球粒子尺寸的依赖关系, 发现当微球直径为3.00 μm 时, 拉曼信号的增强效应最强, 可以达到约5倍的增强. 进一步利用聚苯乙烯微球的增强效应, 获得了单层吸附在Au(111)表面上具有共振增强效应的异氰基孔雀石绿分子的拉曼信号, 得到约20倍的信号净增强, 相当于约3个数量级的拉曼增强效应, 表明利用这种方法可以显著提高单晶表面吸附分子的检测灵敏度. 这种增强效应主要是由于激光在透明微球的作用下, 在微球底部产生纳米光束流, 从而形成高度局域化的电磁场, 使拉曼散射过程得到极大的增强. 初步探讨了两种类型样品表面获得不同的增强效应的原因.
以MnO2为活性组分, Fe2O3为助剂, 制备了以TiO2及ZrO2-TiO2为载体的整体式催化剂. 考察了它们在不同温度焙烧后应用于富氧条件下, NH3选择性催化还原(NH3-SCR)氮氧化物的低温反应性能和高温稳定性. 用X射线衍射(XRD)实验、比表面积测定(BET)、储氧性能测定(OSC)及程序升温还原(H2-TPR)等方法对催化剂进行了表征. 结果表明, 以ZrO2-TiO2为载体的催化剂具有很好的高温热稳定性, 并具有较高的比表面积和储氧能力, 同时具有较强的氧化能力. 催化剂的活性测试结果表明, 以ZrO2-TiO2为载体的整体式锰基催化剂明显地提高了NH3-SCR反应的低温活性, 具有良好的应用前景.
报道了一种可控的通过DNA复合物在微流路中杂交固定蛋白质的方法. 微流路系统中的玻璃基底上固定寡聚核苷酸, 其中的层流提供了不同的DNA-蛋白质复合物. DNA的特异性识别可以将蛋白通过表面寻址固定在基底上. 并且在体系中引入了全内反射荧光技术来追踪整个过程. 此方法的特异性和灵敏度均较高, 且蛋白质的固定和去除可重复. 实验结果显示, 同时检测特异性和非特异性的识别, 可以有效提高生物检测的准确性. 这项技术可以提高具有微流路结构的生物传感器装置的检测质量.