传统过程工业,诸如我国水泥、钢铁、耐材和电石等行业,都涉及碳酸盐高温热分解过程,其导致的CO2排放量超过了全国工业碳排放总量的50%,大量CO2排放对全球气候产生了不可逆转的影响。因此,如何减少过程工业排放的CO2并且充分利用碳酸盐热分解的余热面临着巨大挑战。为进一步降低该类过程工业的CO2排放量同时降低其热分解的能耗,通过利用地球上储量丰富的温室气体CH4,对碳酸盐进行共热耦合重整制备合成气等高附加值产品,有望成为一种环保经济的技术路线。本文总结了(光/热)碳酸盐炼制耦合甲烷干重整反应、醇类重整反应以及CO2捕获反应的最新进展,并且对碳酸盐炼制耦合甲烷干重整反应在理论计算方面的研究进展进行了介绍,进一步结合本课题组近期关于碳酸盐共热耦合甲烷重整的最新结果,我们提出了该类耦合反应的发展展望,为实现CO2的高效转化和减排增效提供了思路。
液流电池因为具有高储能效率,低成本,以及可解耦的能源储存和功率输出设计,被广泛认为是适用于大型储能的首选技术。但是长期以来,液流电池在电网中的大规模部署一直受限于现有的金属基活性材料的高成本和较低的储能密度。因其潜在的低成本,丰富的原材料来源,高度可调的分子结构,具有氧化还原活性的有机分子作为潜在的液流电池活性材料,受到越来越多的关注。本文首先介绍了液流电池的工作机制,以提升非水系有机液流电池的储能密度的策略为重点,总结了非水系液流电池中有机活性材料的研究进展。并讨论了这些策略存在的问题和未来的发展方向。
水资源短缺是世界长期面临的问题,当前全球80多个国家的约15亿人口面临淡水不足,其中26个国家的3亿人口完全生活在缺水状态。近年来,人们开发了新型太阳能界面水蒸发材料和技术,能够利用高效光热材料吸收太阳能转化为热能,实现大量的、快速的水蒸发,冷凝后收集便得到洁净水,是一种高效、绿色、低成本水处理和解决水资源短缺的方法。石墨烯三维组装体材料的物理和化学性质优异,光热转化效率高,同时其太阳光吸收率高,内部微纳孔道丰富,具有良好的水传输通道,表面水蒸发面积大,在太阳光照射下能够实现超高的水蒸发速率,在光热水处理方面展现了巨大的科学研究意义和实用价值。本文将综述石墨烯三维组装体的制备及光热水处理方面的研究进展,包括石墨烯三维结构组装体制备方法,其光热水蒸发性能,总结了石墨烯三维结构组装体在光热水蒸发及水处理方面的应用,最后分析了石墨烯三维结构组装体光热水处理面临的问题及展望。
金属卤素钙钛矿是目前最有前景的高效低成本新型太阳能电池材料,但是目前还存在环境友好性和理论效率极限较低的问题。锡钙钛矿环境友好,而且其带隙更窄理论转换效率更高,吸引了广泛的关注。锡钙钛矿太阳能电池(TPSC)近年来发展迅速,是目前效率最高的无铅钙钛矿太阳能电池。本文先介绍了锡钙钛矿的晶体结构、能带结构和光电性质,然后总结了最近在锡钙钛矿领域有代表性的工作和提高光电转化效率的策略,最后讨论了锡钙钛矿发展面临的挑战和未来的发展方向。
钙钛矿太阳电池制备工艺简单,效率提升迅速,被认为是最具应用潜力的新一代光伏技术之一。近年来,大量研究表明,钙钛矿光电材料可以通过自掺杂或外源掺杂的方式实现薄膜导电类型(p型或n型)的定向调控;而具有双层薄膜结构的钙钛矿p-n同质结可以通过薄膜双沉积技术制备,这为钙钛矿同质结太阳电池的设计与制备提供了技术基础。新型钙钛矿同质结太阳电池摒弃传统的电子传输层和空穴传输层,可简化电池结构,不仅有利于提升电池工作稳定性,降低成本,更能进一步释放钙钛矿太阳电池在柔性和半透明应用中的潜力,推动钙钛矿电池的实用化进程。本文围绕钙钛矿同质结太阳电池,综述了钙钛矿光电材料p/n特性掺杂和钙钛矿同质结的研究进展,讨论了钙钛矿同质结太阳电池的基本结构和工作原理,并对其当前存在的技术问题和应用前景进行了总结与展望。
电化学二氧化碳还原是利用电能驱动将CO2高效转化为小分子碳基燃料的新方法,被认为是目前最具应用潜力的碳资源转化技术之一。然而,CO2还原反应仍面临着诸多挑战,如反应过电位高,产物选择性低以及析氢反应的竞争等。因此,开发高效的电催化剂是发展CO2还原技术的核心关键。近年来,Pd基材料在CO2还原反应中表现出独特的催化性能优势:它不仅可以在接近平衡电位下高选择性地还原CO2生成甲酸/甲酸盐,还能够在一定的负电位区间高效地还原CO2生成CO。尽管如此,Pd基材料目前仍存在着成本较高、活性不理想以及稳定性差等问题,严重制约了其进一步应用与发展。对此,本文首先简单介绍了CO2RR的基本原理,并综述了近年来Pd基催化剂电还原CO2的应用研究及发展现状。重点探讨了尺寸效应、形貌效应、合金效应、核壳效应及载体效应等对Pd基催化剂性能的影响。最后针对这类材料的问题挑战及其未来发展方向进行了探讨与展望。
In this perspective, we review the chemical information encoded in electron density and other ingredients used in semilocal functionals. This information is usually looked at from the functional point of view: the exchange density or the enhancement factor are discussed in terms of the reduced density gradient. However, what parts of a molecule do these 3D functions represent? We look at these quantities in real space, aiming to understand the electronic structure information they encode and provide an insight from the quantum chemical topology (QCT). Generalized gradient approximations (GGAs) provide information about the presence of chemical interactions, whereas meta-GGAs can differentiate between the different bonding types. By merging these two techniques, we show new insight into the failures of semilocal functionals owing to three main errors: fractional charges, fractional spins, and non-covalent interactions. We build on simple models. We also analyze the delocalization error in hydrogen chains, showing the ability of QCT to reveal the delocalization error introduced by semilocal functionals. Then, we show how the analysis of localization can help understand the fractional spin error in alkali atoms, and how it can be used to correct it. Finally, we show that the poor description of GGAs of isodesmic reactions in alkanes is due to 1, 3-interactions.
以二硫化钼(MoS2)为代表的半导体二维过渡金属硫族化合物(TMDCs)具有优异的光电特性,在新型电子器件领域展示出广阔的应用前景。二维MoS2的性能调控与功能协同是实现其在电子器件领域实用化的关键。化学掺杂是调控二维MoS2的性能并丰富其材料特性最为直接而有效的方法之一。本文重点介绍了基于表面电荷转移、面内取代以及层间插层策略的掺杂方法,讨论了各种掺杂方法的基本原理、最新进展以及局限性,最后展望了二维MoS2掺杂研究面临的挑战与发展方向。
由于能源危机与环境问题,全球能源的消耗正逐渐从传统化石能源转向其它清洁高效能源。高效清洁能源的存储是电动汽车和智能电网的关键技术,对新能源、新材料和新能源汽车国家战略新兴产业的发展具有重要意义。锂离子电池是目前广泛应用的一种能源存储器件。电动汽车和智能电网对能量密度、功率密度、循环寿命和成本等方面的要求越来越高,传统的锂离子电池面临巨大挑战,发展下一代能源存储技术迫在眉睫。高能量密度的锂硫电池和锂空气电池,低成本、高安全性的室温钠离子电池受到了越来越多的关注。本文简要总结了近年来锂硫电池、锂空气电池和钠离子电池及其关键电极材料的研究进展,并对这些新型能源存储技术存在的问题和未来的前景做出了分析和展望。
利用光解水制氢将太阳能直接转化并储存为氢和氧的化学能是解决能源危机和环境污染的有效途径之一。光解水制氢过程中光生载流子在材料表面处发生的氧化还原反应尤为复杂,由于表面反应拥有较高的过电位以及缓慢的气体脱附速率而成为整个光解水过程中的速控步骤,因此得到了研究者的重点关注和研究。本文就催化剂表面反应过程调控的科学问题进行简要总结和展望。结合光催化水分解基本原理,(i)阐述了促进表面水分解反应速率的主要方法;(ii)介绍了表面助催化剂的作用和分类;(iii)讨论了材料表面态的钝化和保护层的包覆对表面水分解反应的影响。最后对光催化水分解表面反应研究的未来发展方向提出了若干设想。