钠离子储能材料和器件
专刊投稿截止日期:2019-05-01
专刊客座编辑: 余彦教授 中国科学技术大学化学与材料科学学院,合肥 230026 研究兴趣:功能材料的电化学制备、化学储能及相关电化学基础研究。主要研究方向为高性能锂离子电池、钠离子电池、锂硫电池、超级电容器等储能器件的关键电极材料的设计合成、储能机制及性能
专刊介绍 储能技术是实现太阳能、风能等可再生能源发电并网普及应用和智能电网建设所急需的核心技术之一。随着规模化储能及电动汽车技术的推广应用,锂资源紧缺问题可能成为制约其大规模应用的最大障碍。相比于传统的锂离子电池,钠离子电池具有低成本、高安全性的优点。因此被赋予厚望。近几年来,钠离子电池的基础和应用研究如火如荼,成为近年来电化学储能的研究热点。 电极材料的电化学性能决定着整个电池的功能。由于钠离子半径相比锂离子大很多,使得离子嵌入脱出时扩散比较慢,且多次循环后电极材料容易出现结构破坏,从而引起容量的迅速衰减。因此,发展低应变、高容量、长寿命电极材料是实现高性能钠离子电池的突破口,需要大家共同努力。同时,发展优异的电解质材料,深入研究电池储能机理和电极反应动力学,构建新型电池结构(比如钠硫电池,钠离子电容器)也极为重要。储钠器件走入实际应用,需要材料学、物理学、化学等各个领域的研究者携手同行,共创未来。 此专刊旨在展示钠离子储能研究的新进展、新动态和新成果。
投稿 请于截止日期前,在物理化学学报网站(http://www.whxb.pku.edu.cn/journalx_wlhx/authorLogOn.action)在线投稿。文章接受后即予以出版,并在此专刊网页集中列出。文章类型可以是通讯、展望、专论、综述、论文中的任一种,可以用中文或英文撰写。 所投稿件不能已经出版或准备在其他地方出版。所有稿件都需经过严格的同行评议,不向作者收取费用。更详细信息请见物理化学学报的征稿简则。
采用喷雾热解法合成了碳包覆的SnSb/C合金复合材料,利用X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)等方法对产物的物相和形貌进行了表征,其中SnSb/C颗粒为10 nm左右的复合材料(10-SnSb/C)作为钠离子电池负极时,表现出优异的循环和倍率性能。首圈放电达到722.1 mAh·g-1,首圈库仑效率86.3%,在100、1000、3000 mA·g-1下比容量分别为607.7、645.4、452.2 mAh·g-1,在1000 mA·g-1电流下循环200周后可逆容量达到623 mAh·g-1,容量保持率为95%。SnSb/C复合材料出色的储钠性能源于其完全被碳包裹的纳米结构,该结构可以有效提高活性物质的利用率,促进电子、离子的传导,并且抑制纳米粒子在长循环过程中的粉化和团聚。
钛基层状氧化物因具有较低的成本、较好的空气稳定性和循环稳定性,以及较高的安全性等优点,被认为是一种具有潜在应用价值的室温钠离子电池负极材料。本文使用固相法首次设计并合成了一种新型P2相Na0.65Li0.13Mg0.13Ti0.74O2电极材料。通过延长烧结时间,可以制得混有正交相的样品,进一步研究发现该混合相样品具有更加优异的储钠性能。混合相样品首周可逆容量为96.3 mAh·g-1,而纯P2相仅为85.1 mAh·g-1;在1C倍率下循环400周的容量保持率为89.7%,高于P2相的84.4%,并且倍率性能显著提升(混合相样品56.6 mAh·g-1/5C vs.纯P2相样品47.1 mAh·g-1/2C)。该研究发现共生的两种结构能够提高材料的离子、电子传导,进而可以改善材料充放电过程中离子、电荷分布的均一性,从而提升材料的循环性能。该研究成果有助于拓展其他层状氧化物材料的研究思路,为提高钠离子电池的能量密度和循环性能提供了可行方法。
Na0.44MnO2具有原料丰富、合成简单、无毒环境友好、结构稳定性高等优势,适合作为水溶液钠离子电池的正极材料。Na0.44MnO2在中性水溶液中的比容量较低(30–40 mAh∙g−1),而采用碱性电解液可大大提高Na0.44MnO2的可逆比容量(80 mAh∙g−1)。当我们扩宽碱性电池的充放电窗口(1.95–0.3 V)时,在1.0 V (vs Zn/Zn2+)附近出现一个宽的放电平台,且首周放电比容量高达275 mAh∙g−1,远远超出其理论嵌钠容量(121 mAh∙g−1)。本文我们通过对不同放电深度下的电极进行X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)和电感耦合等离子体发射光谱(ICP-AES)表征,研究其超额容量的放电机理。结果表明1.0 V以下的低电位放电过程可分为两个阶段:第一阶段为H+在隧道结构中的嵌入,此时隧道结构保持不变,放电曲线上表现为平台区;第二阶段为过量H+的嵌入引起隧道结构破坏,同时伴随着Mn(OH)2相的生成和Na+从结构中释放出来,放电曲线上表现为斜坡区。这一研究结果表明Na0.44MnO2在碱液中的可逆性与下限电位紧密相关,高稳定的Na0.44MnO2材料需要避免H+的嵌入。
近年来,钠离子电池因其原材料丰富、资源成本低廉及安全环保等突出优点,在电化学规模储能领域和低速电动车中具有广阔的应用前景。聚阴离子型磷酸盐具有稳定的框架结构、合适的工作电压和快速的离子扩散路径等特征,是一类极具研究价值和应用前景的钠离子电池正极材料。但是,磷酸盐正极材料电子导电性差和比能量偏低等缺陷限制了其走向实际应用。研究工作者通过体相结构调控和微纳结构设计等手段进行改性研究,旨在提升磷酸盐正极材料的性能表现、推动钠离子储能体系的研究开发。本文综述了钠离子电池磷酸盐正极材料的最新进展,包括正磷酸盐、焦磷酸盐、氟磷酸盐和混合磷酸盐化合物,通过对磷酸盐材料的晶体结构、储钠机理和改性策略等方面的综述,揭示材料成分、结构与电化学性能之间的本征关系,为聚阴离子磷酸盐正极材料的持续改性和新型磷酸盐高压正极材料的探索开发提供指导。
全固态钠离子电池具有资源丰富、安全性高等优势,作为未来大规模储能的重要选择而成为近年来先进二次电池前沿研究热点。钠离子硫系化合物电解质室温离子电导率高、弹性模量高、容易冷压成型,能增强电极/电解质界面接触、减小界面阻抗、缓冲电极材料在充放电过程中的应力/应变,是全固态钠离子电池的研究重点。本文对钠离子硫系化合物固态电解质的结构及性质进行了总结,讨论了硫系化合物电解质的本征特性、与电极的界面稳定性,并介绍了硫系化合物全固态钠离子电池的研究现状,最后分析了硫系化合物电解质面临的挑战及今后的发展方向。
作为钠离子电池正极材料的体系之一,聚阴离子型化合物具有成本低廉和安全性高的优点,适合于大规模固定式储能系统。实时平衡电网电力供需水平对正极材料的倍率性能提出了更高的要求,而聚阴离子材料虽然存在离子扩散通道,但缺乏电子传输路径,导致其动力学性能不佳。为了挖掘影响聚阴离子型正极动力学性能的因素,本文以结构为基础,对影响聚阴离子正极离子扩散行为的本征原因作了阐述,再从表面修饰和形态设计入手,对目前研究较多的改善电极表面及界面处离子和电子扩散的策略作了总结与点评,然后从材料的分级结构回归到鲜见报导的元素掺杂和取代,从本质上提出优化动力学性能的方案,并展望了进一步提高正极材料倍率性能的方向。本文可为高倍率的聚阴离子型正极材料及其他材料的开发提供基本理论和实践依据。
聚碳酸酯具有较高的介电常数和较强极性的碳酸酯基团,是一类高性能的聚合物固态电解质,但是它在全固态钠离子电池体系中的研究非常少。本文以简便的方法成功制备出了聚碳酸丙烯酯基全固态聚合物电解质,并研究了该全固态电解质在以3, 4, 9, 10-苝四甲酸二酐为正极的有机全固态钠电池中的应用。这种全固态聚合物电解质在钠离子电池中的应用能够有效提高钠离子电池的安全性,防止过充、电解液泄露甚至爆炸等一系列不安全因素带来的隐患。结果表明:这种聚碳酸丙烯酯基全固态聚合物电解质在室温下具有较高的电导率,并且循环前后的阻抗测试说明了该电解质与有机正极具有良好的兼容性。取代了传统液体有机电解液后,该全固态钠电池在室温下展示出了优异的循环性能,循环50周后,容量保持率为99.1%;然而,同类型的液体电池遭受了严重的容量衰减,循环50周后容量只有24.6 mAh·g-1,容量保持率仅为20.5%。
锂离子电池由于其较高的能量密度而在我们的日常生活中被广泛使用,比如手机、笔记本电脑和电动汽车。然而,地球上有限的锂资源可能会阻碍其进一步的发展。近来,由于丰富的资源、合适的电化学平台和低廉的价格,钠离子电池正得到大家越来越多的关注,有希望成为下一代主流储能体系。然而,跟锂离子电池类似,钠离子电池的电解液主要是由易燃的有机碳酸酯或醚类溶剂、钠盐和一些添加剂组成,这就带来了安全隐患。此外,钠金属具有比锂更高的化学活性,导致钠离子电池可能具有比锂离子电池更大的危险性。为了解决这个安全性问题,我们提出一种不可燃的氟代碳酸酯基电解液。电解液成分是由0.9 mol∙L−1 NaPF6溶解在氟代碳酸乙烯酯(FEC)和二-2, 2-三氟乙基碳酸酯(TFEC) (3 : 7,体积比)混合溶剂中组成。测试结果表明,该电解液体系不仅具有优异的阻燃能力,而且与钠离子电池的正负极都具有很好地相容性。在此电解液中,普鲁士蓝正极时表现出色的电化学性能,循环50圈后,仍有84 mAh∙g−1的容量。此外,商业化硬碳材料在该电解液中也表现出了较好的电化学性能。这项工作可能为开发下一代安全型钠离子电池提供新途径。
地球上钠资源储量丰富、成本低廉,使得钠电池吸引了越来越多研究者的关注。传统的基于有机溶剂电解液体系的钠电池在安全方面存在不足。固态钠离子电池能够有效解决安全的问题,增加电池的安全性能。固态钠离子电池是一种很有前景的储能方式。钠离子固体电解质主要有Na-β-Al2O3、钠超离子导体(NASICON)、硫化物、聚合物以及硼氢化物这几类。无机固体电解质相对于聚合物固体电解质,离子电导率有优势。本文总结了三种常见的无机钠离子固体电解质:Na-β-Al2O3、NASICON、硫化物的研究进展,从离子电导率和界面稳定性等方面阐述了近年来的发展。
具有两种不同阳离子的二元金属氧化物在钠离子电池中可发生可逆的多电子反应,是一类非常具有应用前景的高容量负极材料。在本项工作中,通过离子交换法和化学剥离法得到HTiNbO5纳米片,采用水热法将其与蔗糖复合再经由后续热处理得到碳包覆的Ti2Nb2O9纳米片材料。碳包覆的Ti2Nb2O9纳米片可用作钠离子电池的负极材料,具有更高的电子导电性和多的反应活性点以及快速的离子传输通道,在50 mA·g-1的电流密度下具有265.2 mAh·g-1的可逆容量。在0.5 A·g-1的大电流密度下,循环200圈之后比容量为160.9 mAh·g-1 (容量保持率75.3%)。研究结果表明Ti2Nb2O9/C纳米片在钠离子电池中具有出色的充放电性能和循环稳定性,为钠离子电池负极材料提供了可行的新选择。
钠离子电池是目前新兴的低成本储能技术,因在大规模电化学储能中具有较好的应用前景而受到了国内外学者广泛的关注与研究。作为钠离子电池的关键电极材料之一,非石墨的炭质材料因具有储钠活性高、成本低廉、无毒无害等诸多优点,而被认为是钠离子电池实际应用时负极的最佳选择。本文详细综述了目前钠离子电池炭基负极材料的研究进展,重点介绍了炭质材料的储钠机理与特性,分析了炭材料结构与电化学性能之间的关系,探讨了其存在的问题,为钠离子电池炭基负极材料的发展提供有益的认识。
钠具有资源丰富、成本低廉等优势,因此钠离子电池被认为是未来替代锂离子电池的最佳候选者之一。然而,寻找合适的电极材料是当前制备高性能钠离子电池面临的难题之一。在众多候选材料中,钒酸盐材料通过引入阳离子增加钒的配位数,使得材料结构的稳定性得到提高,从而改善了钠离子电池的电化学性能。本文研究了一种原位相分离法合成V2O5/Fe2V4O13纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等对电极材料形貌、组成和结构进行了表征。实验结果显示,V2O5/Fe2V4O13纳米复合材料相对于V2O5纳米线材料,结构更加稳定,在0.1 A·g-1电流密度下,初始放电容量由295.4 mAh·g-1提升到342 mAh·g-1,循环100圈容量保持率由26.6%提高到65.8%,获得了更加优异的倍率性能(在1.0 A·g-1电流密度下,容量由44 mAh·g-1提高到160 mAh·g-1)。因此,V2O5/Fe2V4O13纳米复合材料的研究为开拓新型高性能钠离子电池负极材料拓宽了思路。