Please wait a minute...
Acta Phys. -Chim. Sin.  2009, Vol. 25 Issue (02): 377-381    DOI: 10.3866/PKU.WHXB20090231
Article     
Binding Energy of the Electron Acceptor Cyclobis (Paraquat-Phenylene) Tetracationic Cyclophane and Electron Donating Phenyl Ether Derivatives
XI Hai-Tao; GAO Ya-Jun; SUN Xiao-Qiang; YIN Kai-Liang; CHEN Cheng-Lung
Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, Jiangsu Province, P. R. China; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan Province, P. R. China
Download:   PDF(502KB) Export: BibTeX | EndNote (RIS)      

Abstract  Interactions between the electron acceptor cyclobis(paraquat-phenylene)tetracationic cyclophane (CPQT) and electron donating phenyl ether derivatives in acetonitrile were simulated by molecular dynamics (MD). The structure of CPQTwas optimized by AM1 and B3LYP/6-31+g. Charges generated by theMaterial Studio software were substituted by calculated charges at B3LYP/6-31+g level. The results show that the order of binding energies for the three phenyl ether derivatives and CPQT are as follows: BHEEB·CPQT>BHEB·CPQT>1/4DMB·CPQT. Stabilities of the pseudorotaxanes are found to decrease as the temperature increases. These simulated results are consistent with reported experimental results.

Key wordsCyclophane      Phenyl ether derivatives      Pseudorotaxanes      Binding energy      Molecular dynamics     
Received: 25 September 2008      Published: 08 December 2008
MSC2000:  O641  
Corresponding Authors: SUN Xiao-Qiang     E-mail: xiaoqiang_sun@yahoo.com.cn
Cite this article:

XI Hai-Tao; GAO Ya-Jun; SUN Xiao-Qiang; YIN Kai-Liang; CHEN Cheng-Lung. Binding Energy of the Electron Acceptor Cyclobis (Paraquat-Phenylene) Tetracationic Cyclophane and Electron Donating Phenyl Ether Derivatives. Acta Phys. -Chim. Sin., 2009, 25(02): 377-381.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20090231     OR     http://www.whxb.pku.edu.cn/Y2009/V25/I02/377

[1] YANG Huachao, BO Zheng, SHUAI Xiaorui, YAN Jianhua, CEN Kefa. Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 200-207.
[2] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[3] Noriyuki YOSHII,Mika KOMORI,Shinji KAWADA,Hiroaki TAKABAYASHI,Kazushi FUJIMOTO,Susumu OKAZAKI. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1163-1170.
[4] Liang XIN,Huai SUN. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1179-1188.
[5] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[6] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[7] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[8] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[9] Liao-Ran CAO,Chun-Yu ZHANG,Ding-Lin ZHANG,Hui-Ying CHU,Yue-Bin ZHANG,Guo-Hui LI. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[10] Fang CHEN,Yuan-Yuan LIU,Jian-Long WANG,Ning-Ning Su,Li-Jie LI,Hong-Chun CHEN. Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[11] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[12] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[13] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[14] Li-Juan PENG,Qian YAO,Jing-Bo WANG,Ze-Rong LI,Quan ZHU,Xiang-Yuan LI. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[15] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.