Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (02): 408-412    DOI: 10.3866/PKU.WHXB20110237
ELECTROCHEMISTRY AND NEW ENERGY     
Room Temperature Synthesis of Rutile TiO2 and Its Application in Dye-Sensitized Solar Cells
LIU Jia1,2, YANG Hao-Tian1,2, ZHANG Jing-Bo1, ZHOU Xiao-Wen1, LIN Yuan1
1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(2839KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We prepared rutile TiO2 powders of good crystallinity by hydrolyzing a Ti(OC4H9)4 precursor at room temperature and by reprecipitation. X-ray diffraction (XRD) revealed that higher acidity, lower temperature, and specific amounts of Cl- as a medium result in rutile TiO2. This rutile TiO2 has an irregular rice-like structure. After adding the P105 (EO37PO56EO37) tri-block copolymer as a structural agent, the rutile TiO2 aggregated to form rough 350 nm spheres. These rough spheres have a greatly enhanced light harvesting efficiency and improved energy conversion efficiency in dye-sensitized solar cells. This is due to their high light scattering effect and larger surface area (109.5 m2·g-1). By adding these large rutile spheres at a mass fraction of 25% to the over-layer of a TiO2 film composed of ~20 nm TiO2 particles as light scattering centers, the energy conversion efficiency of the dye-sensitized solar cells (DSSC) was 7.27%. This is a 17% increase in conversation efficiency compared with the DSSC based on a TiO2 photoanode without these rough rutile spheres.



Key wordsDye-sensitized solar cell      TiO2      Rutile      Scattering layer     
Received: 15 October 2010      Published: 12 January 2011
MSC2000:  O649  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2006CB202605), High-Tech Research and Development Program of China (983) (2007AA05Z439), and National Natural Science Foundation of China (20973183).

Corresponding Authors: LIN Yuan     E-mail: linyuan@iccas.ac.cn
Cite this article:

LIU Jia, YANG Hao-Tian, ZHANG Jing-Bo, ZHOU Xiao-Wen, LIN Yuan. Room Temperature Synthesis of Rutile TiO2 and Its Application in Dye-Sensitized Solar Cells. Acta Physico-Chimica Sinica, 2011, 27(02): 408-412.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110237     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I02/408

(1) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33.
(2) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995, 95, 735.
(3) Diebold, U. Surf. Sci. Rep. 2003, 48, 53.
(4) Cao, Y. Q.; Long, H. J.; Chen, Y. M.; Cao, Y. Acta Phys. -Chim. Sin. 2009, 25, 1088.
[曹永强, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2009, 25, 1088.]
(5) Gribb, A. A.; Banfield, J. F. Am. Mineral. 1997, 82, 717.
(6) Park, N. G.; van de Lagemaat, J. J. Phys. Chem. B 2000, 104, 8989.
(7) Eiji, H.; Shinobu, F.; Keita, K.; Hiroaki, I. J. Am. Chem. Soc. 2004, 126, 7790.
(8) Terabe, K.; Kato, K.; Miyazaki, H.; Yamaguchi, S.; Imai, A.; Iguchi, Y. J. Mater. Sci. 1994, 29, 1617.
(9) Slunecko, J.; Kosec, M.; Holc, J.; Drazic, G. J. J. Am. Ceram. Soc. 1998, 81, 1121.
(10) Zhao, W. K.; Fang, Y. L.; Dong, Q. H. Acta Phys. -Chim. Sin. 1998, 14, 424.
[赵文宽, 方佑龄, 董庆华. 物理化学学报, 1998, 14, 424.]
(11) Yin, S.; Hasegawa, H.; Sato, T. Chem. Lett. 2002, 15, 564.
(12) Wang, C. C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113.
(13) Fang, J. X.; Ding, B. J.; Yang, Z. M. Solid State Phenom. 2007, 121-123, 311.
(14) Bao, X. W.; Zhang, J. L.; Liang, X. H.; Huang, J. Z., Zhang, L. Z. Acta Phys. -Chim. Sin. 2005, 21, 69.
[鲍兴旺, 张金龙, 梁学海, 黄家祯, 张利中. 物理化学学报, 2005, 21, 69.]
(15) Zhao, W. K.; Fang, Y. L. Acta Phys. -Chim. Sin. 2002, 18, 368.
[赵文宽, 方佑龄. 物理化学学报, 2002, 18, 368.]
(16) Wu, L. Z.; Zhi, J. F. Acta Phys. -Chim. Sin. 2007, 23, 1173.
[吴良专, 只金芳. 物理化学学报, 2007, 23, 1173.]
(17) Sarmimala, H.; Carmen, V.; Rainer, K.; Herman, S.; Andreas, H. Solar Energy Materials & Solar Cells 2006, 90, 1176.
(18) Liu, J.; Yang, H. T.; Tan, W. W.; Zhou, X. W.; Lin, Y. Electrochim. Acta 2010, 56, 396.
(19) Zhou, Y. F.; Xiang, W. C.; Chen, S.; Fang, S. B.; Zhou, X. W.; Zhang, J. B.; Lin, Y. Chem. Commun. 2009, No. 26, 3895.
(20) Xiang, W. C.; Zhou, Y. F.; Yin, X.; Zhou, X. W.; Fang, S. B.; Lin, Y. Electrochim. Acta 2009, 54, 4186.
(21) Wu, M. M.; Lin, G.; Chen, D. H.; Wang, G. G.; He, D.; Feng, S. H.; Xu, R. R. Chem. Mater. 2002, 14, 1974.
(22) Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663.
(23) Yin, S.; Hasegawa, H.; Maeda, D.; Ishitsuka, M.; Sato, T. J. Photochem. Photobio. A: Chem. 2004, 163, 1.
(24) Li, G.; Gray, K. A. Chem. Mater. 2007, 19, 1143.
(25) Yang, L.; Lin, Y.; Jia, J. J. Power. Sources 2008, 182, 370.
(26) Soler-Illia, G. J. D. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid Interface Sci. 2003, 8, 109.

[1] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1411-1420.
[2] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1492-1498.
[3] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 960-967.
[4] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 602-610.
[5] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2523-2531.
[6] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2301-2309.
[7] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2029-2034.
[8] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2042-2051.
[9] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1944-1959.
[10] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.
[11] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (I): Surface Atom Identification[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2113-2118.
[12] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (II): The Sintered Neck[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2119-2124.
[13] WENG Xiao-Long, WANG Yan, JIA Chun-Yang, WAN Zhong-Quan, CHEN Xi-Ming, YAO Xiao-Jun. Theoretical Investigation of Novel Tetrathiafulvalene- Triphenylamine Sensitizers[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1990-1998.
[14] LI Yue, ZHANG Ting-Ting, WANG Juan, ZHU Zhen, JIA Bing, YU Jiang. Catalytic Combustion of n-Hexanal Using Cu-Mn Composite Oxide Supported on TiO2[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2084-2092.
[15] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1758-1764.