Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (06): 1439-1445    DOI: 10.3866/PKU.WHXB20110607
ELECTROCHEMISTRY AND NEW ENERGY     
Surfactant Carbonization to Synthesize a Fe3O4/C Composite and Its Electrochemical Performance
CHENG Feng, HUANG Ke-Long, LIU Su-Qin, FANG Xue-Song, ZHANG Xin
College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, P. R. China
Download:   PDF(1167KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Oleic acid-capped α-Fe2O3 nanoparticles were initially prepared as precursors by a simple hydrothermal method. Fe3O4/C nanocomposites were synthesized by annealing the precursor at 500 °C for 1 h under an Ar atmosphere. The surface organic groups and core phase structure of the samples were characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), respectively. Scanning electron microscopy (SEM) was used to observe their morphology. The existence of carbon was confirmed by elemental analysis, energy-dispersive X-ray (EDX) spectroscopy and high-resolution transmission electron microscopy (HRTEM). Cyclic voltammetry (CV) and galvanostatic discharge/charge measurements were used to evaluate the electrochemical performance of the as-prepared Fe3O4/C nanocomposites. The results showed that Fe3O4/C nanocomposites were spindles alike with a length of about 200 nm and a diameter of about 100 nm. A carbon layer of 1-2 nm in thickness was coated on the surface of the Fe3O4 nanocrystals and the carbon content was 1.956% (mass fraction). As anode materials for lithium-ion batteries, the composite exhibited excellent cycling performance (691.7 mAh·g-1 after 80 cycles at 0.2C (1C=928 mA·g-1)) and rate capability (520 mAh·g-1 after 20 cycles at 2C). Compared with commercial Fe3O4 particles, the remarkably improved electrochemical performance of the Fe3O4/C composites was attributed to in situ carbon coating, which prevented nanoparticle aggregation, increased electronic conductivity and stabilized the solid electrolyte interface (SEI) films.



Key wordsLithium-ion battery      Magnetite      Surfactant carbonization      In situ carbon coating      Composite     
Received: 14 March 2011      Published: 20 April 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (50972165).

Corresponding Authors: HUANG Ke-Long     E-mail: klhuang@mail.csu.edu.cn
Cite this article:

CHENG Feng, HUANG Ke-Long, LIU Su-Qin, FANG Xue-Song, ZHANG Xin. Surfactant Carbonization to Synthesize a Fe3O4/C Composite and Its Electrochemical Performance. Acta Physico-Chimica Sinica, 2011, 27(06): 1439-1445.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110607     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I06/1439

(1) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
(2) Needham, S. A.;Wang, G. X.; Konstantinov, K.; Tournayre, Y.; Lao, Z.; Liu, H. K. Electrochem. Solid-State Lett. 2006, 9 (7), A315.
(3) Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Zhou, F. Electrochim. Acta 2010, 55, 8981.
(4) Xiang, J. Y.; Tu, J. P.; Zhang, J.; Zhong, J.; Zhang, D.; Cheng, J. P. Electrochem. Commun. 2010, 12, 1103.
(5) Ohzuku, T.; Pistoia, G. Lithium Batteries: New Materials, Developments and Perspectives; Elsevier: Amsterdam, 1994; pp: 239-280.
(6) Coey, J. M. D.; Berkowitz, A. E.; Balcells, L.; Putris, F.F.; Parker, F. T. Appl. Phys. Lett. 1998, 72 (6), 734.
(7) Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M. Adv. Funct. Mater. 2006, 16, 2281.
(8) Zhang,W. M.;Wu, X. L.; Hu, J. S.; Guo, Y. G.;Wan, L. J. Adv. Funct. Mater. 2008, 18, 3941.
(9) Muraliganth, T.; Murugan, A. V.; Manthiram, A. Chem. Commun. 2009, 7360.
(10) Piao, Y.; Kim, H. S.; Sung, Y. E.; Hyeon, T. Chem. Commun. 2010, 46, 118.
(11) Liu, H.;Wang, X. L.; Hu, J. S.;Wexler, D. Electrochem. Commun. 2008, 10, 1879.
(12) Cui, Z. M.; Jiang, L. Y.; Song,W. G.; Guo, Y. G. Chem. Mater. 2009, 21, 1162.
(13) Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.; Dupont, L.; Poizot, P.; Tarascona, J. M. J. Electrochem. Soc. 2001, 148 (4), A285.
(14) Zhang, M.; Lei, D. N.; Yin, X. M.; Chen, L. B.; Li, Q. H.;Wang, Y. G.;Wang, T. H. J. Mater. Chem. 2010, 20, 5538.
(15) Cao, Q.; Zhang, H. P.;Wang, G. J.; Xia, Q.;Wu, Y. P.;Wu, H. Q. Electrochem. Commun. 2007, 9, 1228.
(16) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609.
[苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.]
(17) Wang, L. J.; Zhou, X. C.; Guo, Y. L. J. Power Sources 2010, 195, 2844.
(18) Zhu, H.;Wang, B.; Shen, J. M.; Kang, X. H.; Guo, H. F.; Zhu, L. Acta Phys. -Chim. Sin. 2006, 22, 552.
[朱红, 王滨, 申靓梅, 康晓红, 郭洪范, 朱磊. 物理化学学报, 2006, 22, 552.]
(19) Söderlind, F.; Pedersen, H.; Petoral, R. M.; Käll, P. O.; Uvdal, K. J. Colloid Interface Sci. 2005, 288, 140.
(20) Chikate, R. C.; Jun, K.W.; Rode, C. V. Polyhedron 2008, 27, 933.
(21) Chen, J.; Huang, K. L.; Liu, S. Q. Chin. J. Inorg. Chem. 2008, 24, 621.
[陈洁, 黄可龙, 刘素琴. 无机化学学报, 2008, 24, 621.]
(22) Wang, L. L.; Gao, L. J. Phys. Chem. C 2009, 113, 15914.
(23) Wang, S. Q.; Zhang, J. Y.; Chen, C. H. J. Power Sources 2010, 195, 5379.
(24) Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarasconet, J. M. J. Electrochem. Soc. 2002, 149 (5), A627.
(25) Shyamal, K. D.; Manu, P.; Aninda, J. B. Appl. Mater. Interfaces 2010, 2 (7), 2091.
(26) Armand, M.; Tarascon, J. M. Nature 2008, 451, 7.
(27) Liu, H. J.; Bo, S. H.; Cui,W. J.; Li, F.;Wang, C. X.; Xia, Y. Y. Electrochim. Acta 2008, 53, 6497.
(28) Duan, H. N.; Gnanaraj, J.; Chen, X. P.; Li, B. Q.; Liang, J. Y. J. Power Sources 2008, 185, 512.
(29) Zhang, M.; Yin, X. M.; Du, Z. F.; Liu, S.; Chen, L. B.; Li, Q. H.; Jin, H.; Peng, K.;Wang, T. H. Solid State Sci. 2010, 12, 2024.
(30) Jiao, F.; Bao, J. L.; Bruce, P. G. Electrochem. Solid-State Lett. 2007, 10, A264.
(31) Zhu, G. N.;Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2011, 158 (2), A102.
(32) Lin, B.;Wen, Z. Y.;Wang, X. Y.; Liu, Y. J. Solid State Electrochem. 2010, 14, 1807.
(33) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97-98 (Suppl. SI), 235.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[3] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1715-1720.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[5] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[8] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1492-1498.
[9] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[10] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1230-1235.
[11] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[12] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 968-975.
[13] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 554-562.
[14] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[15] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 435-440.