Please wait a minute...
Acta Phys. Chim. Si.n  2011, Vol. 27 Issue (09): 2244-2250    DOI: 10.3866/PKU.WHXB20110838
PHYSICAL CHEMISTRY OF MATERIALS     
Superior Graphene for Hydrogen Adsorption Prepared by the Improved Liquid Oxidation-Reduction Method
YUAN Wen-Hui1, LI Bao-Qing1, LI Li2
1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China;
2. College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
Download:   PDF(823KB) Export: BibTeX | EndNote (RIS)      

Abstract  Graphite oxide (GO) was prepared from liquid oxidation based on Hummers method and the graphene was then prepared using sodium borohydride to reduce the exfoliated graphite oxide by ultrasonication during which moderate sodium dodecyl benzene sulfonate (SDBS) was added into the suspension to reduce the agglomeration among the graphene layers and to obtain a stable graphene suspension. The as-prepared graphene was characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). XRD results show that the crystal structures are different among graphite, graphite oxide, and graphene. SEM and TEM images show that graphene possesses a gridding structure, a smooth surface, and few defects. AFM analysis indicates that the thickness of the single layer graphene is about 1.3 nm while there are still a few double layers in the sample. The BET specific surface area of the graphene was about 1206 m2·g-1 and its H2 adsorption properties were investigated under high pressure. The samples prepared by liquid oxidation-reduction were compared with that prepared by the improved liquid oxidation-reduction method, which indicates that the addition of SDBS effectively reduces agglomeration among the graphene layers and this generates high quality graphene. The adsorption capacities of H2 on graphene at 25 and 55 °C reached 1.7%(w) and 1.1%(w), respectively, which are much higher than that reported previously.

Key wordsGraphene      Graphite oxide      Hydrogen adsorption      Oxidation-reduction      Ultrasonic exfoliated     
Received: 07 April 2011      Published: 28 June 2011
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (20976057).

Corresponding Authors: YUAN Wen-Hui     E-mail: cewhyuan@scut.edu.cn
Cite this article:

YUAN Wen-Hui, LI Bao-Qing, LI Li. Superior Graphene for Hydrogen Adsorption Prepared by the Improved Liquid Oxidation-Reduction Method. Acta Phys. Chim. Si.n, 2011, 27(09): 2244-2250.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110838     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I09/2244

(1) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Energy and Fuels 2005, 19 (5), 2098.
(2) Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S. Energy 2008, 33 (4), 554.
(3) Rosen, M. A. Energy 2010, 35, 1068.  
(4) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377.  
(5) Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286, 1127.  
(6) Zhou, L.; Zhou, Y. P.; Sun, Y. Int. J. Hydrog. Energy 2004, 29 (5), 475.
(7) Fan, Y. Y.; Liao, B.; Liu, M.;Wei, Y. L.; Lu, M. Q.; Cheng, H. M. Carbon 1999, 37, 1649.  
(8) Gupta, B. K.; Srivastava, O. N. Int. J. Hydrog. Energy 2001, 26, 857.  
(9) Zhou, L.; Zhou, Y. P.; Sun, Y. Int. J. Hydrog. Energy 2004, 29 (3), 319.
(10) Huang, G. R.; Chen, J. Carbon Technologies 2009, 1 (28), 35.
(11) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  
(12) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.  
(13) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498.
(14) Yang, N.; Zhai, J.;Wang, D.; Chen, Y.; Jiang, L. ACS Nano 2010, 4, 887.  
(15) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.]
(16) Sridhar, V.; Jeon, J. H.; Oh, I. K. Carbon 2010, 48(10), 2953.
(17) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26 (6), 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26 (6), 1570.]
(18) Wu, X. Q.; Zong, R. L.; Mou, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26 (11), 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26 (11), 3002.]
(19) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4), 858.]
(20) Srinivas, G.; Zhu, Y.W.; Piner, R.; Skipper, R.; Ellerby, M.; Ruoff, R. Carbon 2010, 48 (3), 630.
(21) Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. J. Phys. Chem. C 2008, 112, 15704.  
(22) Ma, L. P.;Wu, Z. S.; Li, J.;Wu, E. D.; Ren,W. C.; Cheng, H. M. Hydrogen Energy 2009, 34 (5), 2329.
(23) Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050.  
(24) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.  
(25) Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. ACS Nano 2010, 4 (6), 3155.
(26) Xu, Y. X.; Bai, H.; Lu, G.W.; Li, C.; Shi, G. Q. J. Am. Chem. Soc. 2008, 130 (18), 5856.
(27) Hummers, S.; Offeman, R. J. Am. Chem. Soc. 1958, 80 (6), 1339.
(28) Wang, J.; Han, Z. D. Polym. Adv. Technol. 2006, 17 (4), 335.
(29) Lee, S.; Lim, S.; Lim, E.; Lee, K. K. Journal of Physics and Chemistry of Solids 2010, 71 (4), 483.
(30) Ferrari, A. C.; Robertson, J. J. Phys. Rev. B 2000, 61 (20),14095.
(31) Gomez-Navarro, C.;Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7 (11), 3499.
(32) Jung, I.; Pelton, M.; Piner, R.; Dikin, D.A.; Stankovich, S.; Watcharotone, S. Nano. Lett. 2007, 7 (12), 3569.
(33) Szabo, T.; Berkesi, O.; Dekany, I. Carbon 2005, 43 (15), 3186.
(34) Jhi, S. H.; Kwon, Y. K.; Bradley, K. P.; Gabriel, J. C. Solid State Communications 2004, 129, 769.  
(35) Gigras, A.; Bhatia, S. K.; Anil Kumar, A.V.; Myers, A. L. Carbon 2007, 45 (5), 1043.
(36) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22 (4), 1688.
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Si.n, 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Si.n, 2017, 33(9): 1828-1837.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Si.n, 2017, 33(9): 1822-1827.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Si.n, 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Si.n, 2017, 33(8): 1628-1634.
[6] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Si.n, 2017, 33(7): 1338-1353.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Si.n, 2017, 33(6): 1230-1235.
[8] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Si.n, 2017, 33(3): 520-529.
[9] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Si.n, 2017, 33(3): 554-562.
[10] WANG Quan-Jun, SUN Hong-Juan, PENG Tong-Jiang, FENG Ming-Zhu. Structure Development during the Cation Exchange Processes of Graphite Oxide[J]. Acta Phys. Chim. Si.n, 2017, 33(2): 413-418.
[11] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Si.n, 2017, 33(2): 377-385.
[12] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Si.n, 2017, 33(12): 2542-2549.
[13] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Si.n, 2017, 33(12): 2404-2423.
[14] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Si.n, 2017, 33(11): 2284-2292.
[15] WANG Xu-Chun, LI Jin-Ze, LI Guang-Yong, WANG Jin, ZHANG Xue-Tong, GUO Qiang. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Phys. Chim. Si.n, 2017, 33(11): 2141-2152.