Please wait a minute...
Acta Phys. Chim. Si.n  2011, Vol. 27 Issue (09): 2129-2134    DOI: 10.3866/PKU.WHXB20110933
ELECTROCHEMISTRY AND NEW ENERGY     
Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries
GAO Wen-Chao1, HUANG Tao1, SHEN Yu-Dong2, YU Ai-Shui1
1. Department of Chemistry, Institute of New Energy, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China;
2. Wuxi Dongheng New Energy Material Co., Ltd, Wuxi 214037, Jiangsu Province, P. R. China
Download:   PDF(677KB) Export: BibTeX | EndNote (RIS)      

Abstract  A core-shell structure of the carbon-coated natural graphite oxide composite was successfully prepared. Natural graphite was initially oxidized using concentrated sulfuric acid and then carbon coated by the carbonization of phenolic resin at high temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman techniques were used to characterize the morphology and structure of the natural graphite materials before and after oxidation and carbon coating by the pyrolysis of the phenolic resin. The results showed that the surface of the natural graphite particles became smoother and the surface defects were effectively modified after oxidation and carbon coating. The electrochemical test results showed that the electrochemical performance of the natural graphite improved significantly by oxidation with sulfuric acid and by carbon coating. When the covering amount of phenolic resin was 9% the modified natural graphite material gave the best electrochemical performance. Its initial discharge capacity was 434.0 mAh·g-1 and it remained 361.6 mAh· g-1 after 40 charge-discharge cycles. The discharge capacity of the untreated natural graphite was only 332.3 mAh·g-1. The modification approach that improved the capacity of the natural graphite effectively is of great significance for the application of natural graphite in lithium ion batteries.

Key wordsAnode material      Natural graphite      Phenolic resin      Oxidation      Coating     
Received: 13 May 2011      Published: 29 July 2011
MSC2000:  O646  
Fund:  

The project was supported by the Key Program of Basic Research of the Shanghai Committee of Science and Technology, China (10JC1401500) and Department of Chemistry and Shanghai Key Laboratory of Molecular and Innovative Materials, China (08DZ2270500).

Corresponding Authors: YU Ai-Shui     E-mail: asyu@fudan.edu.cn
Cite this article:

GAO Wen-Chao, HUANG Tao, SHEN Yu-Dong, YU Ai-Shui. Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries. Acta Phys. Chim. Si.n, 2011, 27(09): 2129-2134.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110933     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I09/2129

(1) Doyle, M.; Fuller, T. F.; Newman, J. J. Electrochem. Soc. 1993, 140, 1526.  
(2) Whittingham, M. S. Chem. Rev. 2004, 104 (10), 4271.
(3) Li, F. Q.; Lai, Y. Q.; Zhang, Z. A.; Gao, H. Q.; Yang, J. Acta Phys. -Chim. Sin. 2008, 24, 1302. [李凡群, 赖延清, 张治安, 高宏权, 杨娟. 物理化学学报, 2008, 24, 1302.]
(4) Zhao, H. P.; Ren, J. G.; He, X. M.; Li, J. J.; Jiang, C. Y.;Wan, C. R. Electrochim. Acta 2007, 52, 6006.  
(5) Yoshio, M.;Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245.  
(6) Mao,W. Q.;Wang, J. M.; Xu, Z. H.; Niu, Z. X.; Zhang, J. Q. Electrochem. Commun. 2006, 8, 1326.  
(7) Menachem, C.;Wang, Y.; Floners, J.; Peled, E.; Greenbaum, S. G. J. Power Sources 1998, 76, 180.  
(8) Chen, J. T.; Zhou, H. H.; Chang,W. B.; Ci, Y. X. Acta Phys. -Chim. Sin. 2002, 18, 180. [陈继涛, 周恒辉, 常文保, 慈云祥. 物理化学学报, 2002, 18, 180.]
(9) Zhang, H. L.; Li, F.; Liu, C. J. Phys. Chem. C 2008, 112, 7767.  
(10) Choi,W. C.; Byun, D. J.; Lee, J. K.; Cho, B.W. Electrochim. Acta 2004, 50, 523.  
(11) Takamura, T. Bull. Chem. Soc. Jpn. 2002, 75, 21.  
(12) Tossici, R.; Berrettoni, M.; Rosolen, M. J. Eletrochem. Soc. 1997, 144, 186.  
(13) Tanaka, U.; Sogabe, T.; Sakagoshi, H.; Tojo, T. Carbon 2001, 39, 931.  
(14) Guo, K. K.; Pan, Q. M.; Fan, S. B. J. Power Sources 2002, 111, 350.  
(15) Yu, Z. H.;Wu, F. Battery Bimonthly 2003, 33, 131. [俞政洪, 吴锋. 电池, 2003, 33, 131.]
(16) Tuistra, F.; Koeing, J. L. J. Compos. Mater. 1970, 4, 492.
(17) Tsumura, T.; Katanosaka, A.; Souma, I. Solid State Ionics 2000, 135, 209.  
[1] FU Zhi-Dan, ZANG Jia-Xin, YE Qing, CHENG Shui-Yuan, KANG Tian-Fang. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. Chim. Si.n, 2017, 33(9): 1855-1864.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Si.n, 2017, 33(8): 1605-1613.
[3] HU Ling-Xiao, WANG Lian, WANG Fei, ZHANG Chang-Bin, HE Hong. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. Chim. Si.n, 2017, 33(8): 1681-1688.
[4] ZHENG Fang-Fang, LI Qian, ZHANG Hong, WENG Wei-Zheng, YI Xiao-Dong, ZHENG Yan-Ping, HUANG Chuan-Jing, WAN Hui-Lin. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. Chim. Si.n, 2017, 33(8): 1689-1698.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Si.n, 2017, 33(8): 1628-1634.
[6] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Si.n, 2017, 33(7): 1462-1473.
[7] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Si.n, 2017, 33(7): 1453-1461.
[8] HUANG Yu-Fen, ZHANG Hai-Long, YANG Zheng-Zheng, ZHAO Ming, HUANG Mu-Lan, LIANG Yan-Li, WANG Jian-Li, CHEN Yao-Qiang. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. Chim. Si.n, 2017, 33(6): 1242-1252.
[9] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Si.n, 2017, 33(4): 845-852.
[10] CHEN Ming, WANG Lin, TAN Tian, LUO Xue-Cai, ZHENG Zai, YIN Ruo-Chun, SU Ji-Hu, DU Jiang-Feng. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening[J]. Acta Phys. Chim. Si.n, 2017, 33(3): 620-626.
[11] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. Chim. Si.n, 2017, 33(3): 563-572.
[12] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. Chim. Si.n, 2017, 33(2): 283-294.
[13] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. Chim. Si.n, 2017, 33(2): 386-392.
[14] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. Chim. Si.n, 2017, 33(2): 370-376.
[15] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Si.n, 2017, 33(12): 2517-2522.