Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (02): 387-392    DOI: 10.3866/PKU.WHXB201111241
Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires
ZHANG Guo-Liang1, ZHAO Dan1, GUO Pei-Zhi1, WEI Zhong-Bin1, ZHAO Xiu-Song1,2
1. Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, School of Chemistry, Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao 266071, Shandong Province, P. R. China;
2. School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
Download:   PDF(1052KB) Export: BibTeX | EndNote (RIS)      

Abstract  Cobalt oxide (Co3O4) nanowires were controllably synthesized using glycerol and Co(NO3)2 as reagents and adjustment of the experimental parameters. The morphology and structure of the asprepared products were characterized by a series of techniques such as X-ray podwer diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical performance of the nanowires was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It was found that two pairs of redox peaks appeared in the CV curves of Co3O4 nanowire electrodes at low scan rates. The specific capacitance of the Co3O4 nanowire electrodes was 163 F·g-1 at a current density of 1 A·g-1, according to the galvanostatic charge-discharge measurements. Cycle stability tests showed that the specific capacitance increased over the first tens of cycles and then reduced slowly. After 1000 cycles, the capacitance retention was over 98% at 1 A·g-1 and 80% at 4 A·g-1; it then decreased obviously with further increase in cycle number. In Li-ion battery measurements, Co3O4 nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1 which decreased rapidly during the cycle test. The formation mechanism and the relationship between the structure and electrochemical properties of Co3O4 nanowires were discussed based on the experimental results.

Key wordsElectrode      Capacitance      Co3O4      Nanowire      Glycerol     
Received: 11 October 2011      Published: 24 November 2011
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20803037, 21143006), Natural Science Foundation of Shandong Province, China (ZR2009BM013), and Foundation of Qingdao Municipal Science and Technology Commission, China (11-2-4-2-(8)-jch).

Corresponding Authors: GUO Pei-Zhi     E-mail:;
Cite this article:

ZHANG Guo-Liang, ZHAO Dan, GUO Pei-Zhi, WEI Zhong-Bin, ZHAO Xiu-Song. Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires. Acta Phys. -Chim. Sin., 2012, 28(02): 387-392.

URL:     OR

(1) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.  
(2) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.  
(3) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.  
(4) Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. Chem. Eur. J. 2009, 15, 5320.  
(5) Guo, P. Z.;Wei, Z. B.;Wang, B. Y.; Ding, Y. H.; Li, H. L.; Zhang, G. L.; Zhao, X. S. Colloids Surf. A 2011, 380, 237.
(6) Chen, C. H.; Abbs, S. F.; Morey, A.; Sithambaram, S.; Xu, L. P.; Garces, H. F.; Hines,W. A.; Suib, S. L. Adv. Mater. 2008, 20, 1205.  
(7) Li, Y. G.; Tan, B.;Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.  
(8) Cong, H. P.; Yu, S. H. Cryst. Growth Des. 2009, 9, 210.  
(9) Chen, Y. C.; Hu, L.;Wang, M.; Min, Y. L.; Zhang, Y. G. Colloids Surf. A 2009, 336, 64.  
(10) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.  
(11) Wei, T. Y.; Chen, C. H.; Chang, K. H.; Lu, S. Y.; Hu, C. C. Chem. Mater. 2009, 21, 3228.  
(12) Zhao, Z. G.; Geng, F. X.; Bai, J. B.; Cheng, H. M. J. Phys. Chem. C 2007, 111, 3848.  
(13) Hu, L. H.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. 2008, 130, 16136.  
(14) Lou, X.W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 18, 4397.  
(15) Li, Y. G.; Tan, B.;Wu, Y. Y. Nano Lett. 2008, 8, 265.  
(16) Mekhemer, G. A. H.; Abd-Allah, H. M. M.; Mansour, S. A. A. Colloids Surf. A 1999, 160, 251.  
(17) Salabas, E. L.; Rumplecker, A.; Kleitz, F.; Radu, F.; Schueth, F. Nano Lett. 2006, 6, 2977.  
(18) Nam, K. T.; Kim, D.W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.  
(19) Li, T.; Yang, S.; Huang, L.; Gu, B.; Du, Y. Nanotechnology 2004, 15, 1479.  
(20) Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, K. H.; Dou, S. X. Electrochim. Acta 2005, 50, 3667.  
(21) Yang, L. X.; Zhu, Y. J.; Li, L.; Zhang, L.; Tong, H.;Wang,W. W.; Cheng, G. F.; Zhu, J. F. Eur. J. Inorg. Chem. 2006, 4787.
(22) Xiu, S. N.; Shahbazi, A.; Shirley, V.; Mims, M. R.;Wallace, C. W. J. Anal. Appl. Pyrol. 2010, 87, 194
(23) Yao, J. F.; Yu, L.; Zhang, L. X.;Wang, H. T. Mater. Lett. 2011, 65, 2304
(24) Li, X. H.; Zhang, D. H.; Chen, J. S. J. Am. Chem. Soc. 2006, 128, 8382.  
(25) Guo, P. Z.; Han, G. T.;Wang, B. Y.; Zhao, X. S. Acta Phys. - Chim. Sin. 2010, 26, 2557. [郭培志, 韩光亭, 王宝燕, 赵修松. 物理化学学报, 2010, 26, 2557.]
(26) Zheng, M.; Cao, J.; Liao, S.; Liu, J.; Chen, H.; Zhao, Y.; Dai, W.; Ji, G.; Cao, J.; Tao, J. J. Phys. Chem. C 2009, 113, 3887.  
(27) Gao, Y. Y.; Chen, S. L.; Cao, D. X.;Wang, G. L.; Yin, J. L. J. Power Sources 2010, 195, 1757.  
(28) Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1998, 145, 4097.  
(29) Barbero, C.; Planes, G. A.; Miras, M. C. Electrochem. Commun. 2001, 3, 113.  
(30) Xu, J.; Gao, L.; Cao, J. Y.;Wang,W. C.; Chen. Z. D. Electrochim. Acta 2010, 56, 732.  
(31) Ye, X. G.; Zhang, X. G.; Mi, H. Y.; Yang, S. D. Acta Phys. - Chim. Sin. 2008, 24, 1105. [叶向果, 张校刚, 米红宇, 杨苏东. 物理化学学报, 2008, 24, 1105.]
(32) Lou, X.W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.  
(33) Kang, J. G.; Ko, Y. D.; Park, J. G.; Kim, D.W. Nanoscale Res. Lett. 2008, 3, 390.  
(34) Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Chem. Mater. 2007, 19, 3032.  
(35) Yao,W. L.;Wang, J. L.; Yang, J.; Du, G. D. J. Power Sources 2008, 176, 369.  
(36) Wu, Z. S.; Ren,W. C.;Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng H. M. ACS Nano 2010, 4, 3187.  
[1] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[3] YANG Huachao, BO Zheng, SHUAI Xiaorui, YAN Jianhua, CEN Kefa. Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 200-207.
[4] Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895.
[5] Jianyong OUYANG. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1211-1220.
[6] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[7] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[8] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[9] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[10] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[11] Feng-Ming ZHAO,Gang WEN,Li-Yao KONG,You-Qun CHU,Chun-An MA. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1181-1188.
[12] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690.
[13] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[14] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[15] Hai LAN,Xi XIAO,Shan-Liang YUAN,Biao ZHANG,Gui-Lin ZHOU,Yi JIANG. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2301-2309.