Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (05): 1146-1152    DOI: 10.3866/PKU.WHXB201202272
ELECTROCHEMISTRY AND NEW ENERGY     
Electrochemical Impedance Spectroscopy Study of Failure Process of an Epoxy/Fluorocarbon Coating System
PANG Ran, ZUO Yu, TANG Yu-Ming, XIONG Jin-Ping
Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download:   PDF(3449KB) Export: BibTeX | EndNote (RIS)      

Abstract  The failure processes of a multi-layer coating system (zinc-rich epoxy primer, epoxy middle layer, and fluorocarbon topcoat) in four corrosion environments were studied with electrochemical impedance spectroscopy (EIS). The failure rate of the coating system in the four environments decreases in following order: immersion in a 3.5% NaCl solution under UV light, steam above a water surface at 45 ℃, salt spray at 35 ℃, and immersion in a 3.5% NaCl solution at room temperature. Although the failure rates of the coating system in the four environments are different, the variations of the phase angles at the middle frequency range, particularly 10 Hz, are very close to that of the coating impedance; hence they may be used as a qualitative evaluation parameter for coating inspection.

Key wordsFluorocarbon coating      Electrochemical impedance spectroscopy      Performance      Failure      Fast evaluation      Phase angle     
Received: 30 December 2011      Published: 27 February 2012
MSC2000:  O646  
  TG174  
Fund:  

The project was supported by the National Key Technologies R&D Program of China (2007 BAB 27 B04).

Corresponding Authors: ZUO Yu     E-mail: zuoy@mail.buct.edu.cn
Cite this article:

PANG Ran, ZUO Yu, TANG Yu-Ming, XIONG Jin-Ping. Electrochemical Impedance Spectroscopy Study of Failure Process of an Epoxy/Fluorocarbon Coating System. Acta Phys. Chim. Sin., 2012, 28(05): 1146-1152.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201202272     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I05/1146

(1) Scully, J. R. J. Electrochem. Soc. 1989, 136, 979.  
(2) Scully, J. R.; Hensley, S. T. Corrosion 1994, 50, 705.  
(3) VanWesting, E. P. M.; Ferrari, G. M.; DeWit, J. H.W. Corrosion Sci. 1994, 36, 979.  
(4) VanWesting, E. P. M.; Ferrari, G. M.; DeWit, J. H.W. Corrosion Sci. 1993, 34, 1511.  
(5) Grundmeier, G.; Schmidt,W.; Stratmann, M. Electrochim. Acta 2000, 45, 2515.  
(6) Marchebois, H.; Savall, C.; Bernard, J.; Touzain, S. Electrochim. Acta 2004, 49, 2945.  
(7) Marchebois, H.; Joiret, S.; Savall, C.; Bernard, J.; Touzain, S. Surf. Coat. Tech. 2002, 157, 151.  
(8) Marchebois, H.; Keddam, M.; Joiret, S.; Savall, C.; Bernard, J.; Touzain, S. Electrochim. Acta 2004, 49, 1719.  
(9) Barranco, V.; Feliu, S., Jr.; Feliu, S. Corrosion Sci. 2004, 46, 2203.  
(10) Philippe, L. V. S.; Lyon, S. B.; Sammon, C.; Yarwood, J. Corrosion Sci. 2008, 50, 887.  
(11) Raps, D.; Hack, T.;Wehr, J.; Zheludkevich, M. L.; Bastos, A. C.; Ferreira, M. G. S.; Nuyken, O. Corrosion Sci. 2009, 51, 1012.  
(12) McIntyre, J. M.; Pham, H. Q. Prog. Org. Coat. 1996, 27, 201.  
(13) Bierwagen,G. P.; He, L.; Li, J.; Ellingson, L.; Tallman, D. E. Prog. Org. Coat. 2000, 39, 67.  
(14) Macedo, M. C. S. S.; Margarit-Mattos, I. C. P.; Fragata, F. L.; Jorcin, J. B.; Pébère, N.; Mattos, O. R. Corrosion Sci. 2009, 51, 1322.  
(15) Akbarinezhad, E.; Bahremandi, M.; Faridi, H. R.; Rezaei, F. Corrosion Sci. 2009, 51, 356.  
(16) Haruyama, S.; Sudo, S. Electrochim. Acta 1993, 38, 1857.  
(17) Mansfeld, F.; Tsai, C. H. Corrosion 1991, 47, 958.  
(18) Mahdavian, M.; Attar, M. M. Corrosion Sci. 2006, 48, 4152.  
(19) Mehta, N. K.; Bogere, M. N. Prog. Org. Coat. 2009, 64, 419.  
(20) Zuo, Y.; Pang, R.; Li,W.; Xiong, J. P.; Tang, Y. M. Corrosion Sci. 2008, 50, 3322.  
(21) Miscovic-Stankovic, V. K.; Drazic, D. M.; Teodorovic, M. J. Corrosion Sci. 1995, 37, 241.  
(22) Wu, J. Technology and Applications of Fourier Transform Spectroscopy; Sci. Techn. Literature Pub.: Beijing, 1994; pp 256-310.  
(23) Deflorian, F.; Rossi, S.; Fedel, M. Corrosion Sci. 2008, 50, 2360.  
(24) Loveday, D.; Peterson, P.; Rodgers, B. JCT Coatings Tech. 2004, 1, 88.
[1] RUAN Mao-Mao, SONG Le-Xin, WANG Qing-Shan, XIA Juan, YANG Zun, TENG Yue, XU Zhe-Yuan. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1033-1042.
[2] GUAN Yu-Qiao, CHEN Gang, SONG Juan, WANG Cheng-Xin, QIAN Yan, ZHANG Qin, DENG Ling-Ling, FENG Zeng-Qin, SHANG Wen-Juan, TAO You-Tian, CHEN Shu-Fen, WANG Lian-Hui, HUANG Wei. One-Step Synthesized Novel Spiro[fluorene-9,9'-xanthene]-Based Materials as Highly Efficient Blue Phosphorescent Hosts in Organic Light-Emitting Devices[J]. Acta Phys. Chim. Sin., 2017, 33(4): 816-822.
[3] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[4] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[5] HUANG Jia-Jun, DONG Zhi-Jun, ZHANG Xu, YUAN Guan-Ming, CONG Ye, CUI Zheng-Wei, LI Xuan-Ke. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1699-1707.
[6] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[7] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[8] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[9] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[10] XU Juan, LIU Jia-Qin, LI Jing-Wei, WANG Yan, Lü Jun, WU Yu-Cheng. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2545-2554.
[11] HU Wei, WANG Yun, SHANG Hong-Yan, XU Hai-Di, ZHONG Lin, CHEN Jian-Jun, GONG Mao-Chu, CHEN Yao-Qiang. Effects of Zr Addition on the Performance of the Pd-Pt/Al2O3 Catalyst for Lean-Burn Natural Gas Vehicle Exhaust Purification[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1771-1779.
[12] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1521-1526.
[13] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1527-1534.
[14] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1437-1451.
[15] CHENG Qing-Li, ZHANG Wei-Hua, TAO Bin. Investigation of the Electrochemical Corrosion of Copper under a Micrometric Electrolyte Droplet Using a Three-Electrode System[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1345-1350.