Acta Phys. -Chim. Sin. ›› 2012, Vol. 28 ›› Issue (10): 2315-2326.doi: 10.3866/PKU.WHXB201209146
• CATALYSIS AND SURFACE SCIENCE • Previous Articles Next Articles
CHEN Wen-Long, LIU Hai-Chao
Received:
2012-09-04
Revised:
2012-09-14
Published:
2012-09-26
Supported by:
The project was supported by the National Natural Science Foundation of China (20825310, 20973011) and National Key Basic Research Program of China (973) (2011CB201400, 2011CB808700)
MSC2000:
CHEN Wen-Long, LIU Hai-Chao. Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol[J].Acta Phys. -Chim. Sin., 2012, 28(10): 2315-2326.
(1) Olah, G. A.; Molnár, Á. Hydrocarbon Chemistry, 2nd ed.; JohnWiley & Sons: Hoboken, New Jersey, 2003; pp 114-117. (2) Xu, X. D.; Moulijn, J. A. Energy & Fuels 1996, 10, 305. doi: 10.1021/ef9501511 (3) Hamelinck, C. N.; Faaij, A. P. C. J. Power Sources 2002, 111, 1.doi: 10.1016/S0378-7753(02)00220-3 (4) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy;Wiley-VCH:Weinheim, 2009; pp168-173. (5) Deo, G.;Wachs, I. E. J. Catal. 1994, 146, 323. doi: 10.1006/jcat.1994.1071 (6) Hu, H. C.;Wachs, I. E. J. Phys. Chem. 1995, 99, 10911. doi: 10.1021/j100027a035 (7) Yuan, Y. Z.; Iwasawa, Y. J. Phys. Chem. B 2002, 106, 4441. doi: 10.1021/jp013770l (8) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2005, 109, 2155. doi: 10.1021/jp0401980 (9) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2003, 107, 10840. doi: 10.1021/jp0301554 (10) Tatibouet, J. M. Appl. Catal. A-Gen. 1997, 148, 213. doi: 10.1016/S0926-860X(96)00236-0 (11) Badlani, M.;Wachs, I. E. Catal. Lett. 2001, 75, 137. doi: 10.1023/A:1016715520904 (12) Wachs, I. E. Catal. Today 2005, 100, 79. doi: 10.1016/j.cattod.2004.12.019 (13) Oyama, S. T.; Radhakrishnan, R.; Seman, M.; Kondo, J. N.;Domen, K.; Asakura, K. J. Phys. Chem. B 2003, 107, 1845. doi: 10.1021/jp0220276 (14) Vitry, D.; Morikawa, Y.; Dubois, J. L.; Ueda,W. Appl. Catal. A-Gen. 2003, 251, 411. doi: 10.1016/S0926-860X(03)00381-8 (15) Cavani, F.; Trifiro, F. Catal. Today 1995, 24, 307. doi: 10.1016/0920-5861(95)00051-G (16) Chen, K. D.; Xie, S. B.; Bell, A. T.; Iglesia, E. J. Catal. 2001,198, 232. doi: 10.1006/jcat.2000.3125 (17) Tsilomelekis, G.; Boghosian, S. J. Phys. Chem. C 2011, 115,2146. doi: 10.1021/jp1098987 (18) Chempath, S.; Zhang, Y. H.; Bell, A. T. J. Phys. Chem. C 2007,111, 1291. doi: 10.1021/jp064741j (19) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2007, 111, 14410. doi: 10.1021/jp0735482 (20) Tsilomelekis, G.; Boghosian, S. Phys. Chem. Chem. Phys. 2012,14, 2216. (21) Handzlik, J.; Sautet, P. J. Phys. Chem. C 2008, 112, 14456. doi: 10.1021/jp802372e (22) Liu, H. C.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222. (23) Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.;Boghosian, S. J. Catal. 2006, 242, 16. doi: 10.1016/j.jcat.2006.05.024 (24) Li,W. Z.; Huang, H.; Li, H. J.; Zhang,W.; Liu, H. C. Langmuir2008, 24, 8358. doi: 10.1021/la800370r (25) Hamraoui, K.; Cristol, S.; Payen, E.; Paul, J. F. J. Mol. Struct. - Theochem 2009, 903, 73. doi: 10.1016/j.theochem.2008.09.044 (26) Chen, K. D.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 209, 35. doi: 10.1006/jcat.2002.3620 (27) Liu, H. C.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107,4118. doi: 10.1021/jp0221744 (28) Brandhorst, M.; Cristol, S.; Capron, M.; Dujardin, C.; Vezin, H.;Le bourdon, G.; Payen, E. Catal. Today 2006, 113, 34. doi: 10.1016/j.cattod.2005.11.008 (29) Aritani, H.; Fukuda, O.; Miyaji, A.; Hasegawa, S. Appl. Surf. Sci. 2001, 180, 261. doi: 10.1016/S0169-4332(01)00366-X (30) Tsilomelekis, G.; Christodoulakis, A.; Boghosian, S. Catal. Today 2007, 127, 139. doi: 10.1016/j.cattod.2007.03.026 (31) Zhang, S. H.; Zhang, H. P.; Li,W. Z.; Zhang,W.; Huang, H.;Liu, H. C. Acta Phys. -Chim. Sin. 2010, 26, 1879. [张胜红,张鸿鹏, 李为臻, 张伟, 黄华, 刘海超. 物理化学学报,2010, 26, 1879.] doi: 10.3866/PKU.WHXB20100732 (32) Shannon, I. J.; Maschmeyer, T.; Oldroyd, R. D.; Sankar, G.;Thomas, J. M.; Pernot, H.; Balikdjian, J. P.; Che, M. J. Chem. Soc. Faraday Trans. 1998, 94, 1495. doi: 10.1039/a800054i (33) Grabowski, R.; Grzybowska, B.; Haber, J.; Sloczynski, J. React. Kinet. Catal. Lett. 1975, 2, 81. doi: 10.1007/BF02060956 (34) Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. C. Appl. Catal. 1985, 15, 339. doi: 10.1016/S0166-9834(00)81848-5 (35) Blasco, T.; Lopez-Nieto, J. M. Appl. Catal. A-Gen. 1997, 157,117. doi: 10.1016/S0926-860X(97)00029-X (36) Cavalli, P.; Cavani, F.; Manenti, I.; Trifiro, F. Catal. Today 1987,1, 245. doi: 10.1016/0920-5861(87)80043-3 (37) Kumar, C. P.; Reddy, K. R.; Rao, V. V.; Chary, K. V. R. Green Chem. 2002, 4, 513. doi: 10.1039/b206581a (38) Olthof, B.; Khodakov, A.; Bell, A. T.; Iglesia, E. J. Phys. Chem. B 2000, 104, 1516. doi: 10.1021/jp9921248 (39) Bronkema, J. L.; Leo, D. C.; Bell, A. T. J. Phys. Chem. C 2007,111, 14530. doi: 10.1021/jp073826x (40) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2008, 112, 6404.doi: 10.1021/jp7110692 (41) Tanaka, T.; Yamashita, H.; Tsuchitani, R.; Funabiki, T.; Yoshida,S. J. Chem. Soc. Faraday Trans. 1988, 84, 2987. doi: 10.1039/f19888402987 (42) Eckert, H.;Wachs, I. E. J. Phys. Chem. 1989, 93, 6796. doi: 10.1021/j100355a043 (43) Weckhuysen, B. M.; Jehng, J. M.;Wachs, I. E. J. Phys. Chem. B2000, 104, 7382. doi: 10.1021/jp000055n (44) Busca, G. J. Mol. Catal. 1989, 50, 241. (45) Gao, X. T.; Bare, S. R.;Weckhuysen, B. M.;Wachs, I. E.J. Phys. Chem. B 1998, 102, 10842. doi: 10.1021/jp9826367 (46) Shapovalov, V.; Metiu, H. J. Phys. Chem. C 2007, 111, 14179.doi: 10.1021/jp074481l (47) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2012, 285, 160.doi: 10.1016/j.jcat.2011.09.024 (48) Ganduglia-Pirovano, M. V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl,A.; Baron, M.; Stacchiola, D.; Bondarchuk, O.; Shaikhutdinov,S.; Freund, H. J. J. Am. Chem. Soc. 2010, 132, 2345. doi: 10.1021/ja910574h (49) Burcham, L. J.;Wachs, I. E. Catal. Today 1999, 49, 467. doi: 10.1016/S0920-5861(98)00442-8 (50) Burcham, L. J.; Badlani, M.;Wachs, I. E. J. Catal. 2001, 203,104. doi: 10.1006/jcat.2001.3312 (51) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2007, 111, 420.doi: 10.1021/jp0653149 (52) Goodrow, A.; Bell, A. T. J. Phys. Chem. C 2007, 111, 14753.doi: 10.1021/jp072627a (53) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2011, 281, 222.doi: 10.1016/j.jcat.2011.05.001 (54) Weber, R. S. J. Phys. Chem. 1994, 98, 2999. doi: 10.1021/j100062a042 (55) Kim, H. Y.; Lee, H. M.; Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2009, 113, 16083. doi: 10.1021/jp903298w (56) Abbott, H. L.; Uhl, A.; Baron, M.; Lei, Y.; Meyer, R. J.;Stacchiola, D. J.; Bondarchuk, O.; Shaikhutdinov, S.; Freund,H. J. J. Catal. 2010, 272, 82. doi: 10.1016/j.jcat.2010.03.009 (57) Gao, X. T.;Wachs, I. E. Top. Catal. 2002, 18, 243. doi: 10.1023/A:1013842722877 (58) Goodrow, A.; Bell, A. T. J. Phys. Chem. C 2008, 112, 13204.doi: 10.1021/jp801339q (59) Holstein,W. L.; Machiels, C. J. J. Catal. 1996, 162, 118. doi: 10.1006/jcat.1996.0265 (60) Jackson, S. D.; Hargreaves, J. S. J. Metal Oxide Catalysis;Wiley-VCH:Weinheim, 2009; pp 487-498. (61) Khaliullin, R. Z.; Bell, A. T. J. Phys. Chem. B 2002, 106, 7832.doi: 10.1021/jp014695h (62) Dobler, J.; Pritzsche, M.; Sauer, J. J. Am. Chem. Soc. 2005, 127,10861. doi: 10.1021/ja051720e (63) Gao, X. T.; Bare, S. R.; Fierro, J. L. G.;Wachs, I. E. J. Phys. Chem. B 1999, 103, 618. doi: 10.1021/jp983357m (64) Gao, X. T.; Fierro, J. L. G.;Wachs, I. E. Langmuir 1999, 15,3169. doi: 10.1021/la981254p (65) Gao, X. T.;Wachs, I. E. J. Catal. 2000, 192, 18. doi: 10.1006/jcat.2000.2822 (66) Fubini, B.; Bolis, V.; Cavenago, A.; Garrone, E.; Ugliengo, P.Langmuir 1993, 9, 2712. doi: 10.1021/la00034a034 (67) Feng, T.; Vohs, J. M. J. Catal. 2004, 221, 619. doi: 10.1016/j.jcat.2003.10.002 (68) Zhanpeisov, N. U.; Fukumura, H. J. Phys. Chem. C 2007, 111,16941. doi: 10.1021/jp074869g (69) Eder, D.; Kramer, R. Phys. Chem. Chem. Phys. 2003, 5, 1314. (70) Strunk, J.; Vining,W. C.; Bell, A. T. J. Phys. Chem. C 2010,114, 16937. doi: 10.1021/jp100104d (71) Kim, H. Y.; Lee, H. M.; Metiu, H. J. Phys. Chem. C 2010, 114,13736. doi: 10.1021/jp103361v (72) Vining,W. C.; Goodrow, A.; Strunk, J.; Bell, A. T. J. Catal.2010, 270, 163. doi: 10.1016/j.jcat.2009.12.017 (73) Ross-Medgaarden, E. I.;Wachs, I. E.; Knowles,W. V.; Burrows,A.; Kiely, C. J.;Wong, M. S. J. Am. Chem. Soc. 2009, 131, 680.doi: 10.1021/ja711456c (74) Masamoto, J.; Iwaisako, T.; Chohno, M.; Kawamura, M.;Ohtake, J.; Matsuzaki, K. J. Appl. Polym. Sci. 1993, 50, 1299.doi: 10.1002/app.1993.070500801 (75) Zhang, Q. D.; Tan, Y. S.; Yang, C. H.; Han, Y. Z. J. Mol. Catal. A-Chem. 2007, 263, 149. doi: 10.1016/j.molcata.2006.08.044 (76) Lambiotte, G. New Process for Continuous Production ofMethylal. CH Patent 688041, 1997. (77) Satoh, S.; Tanigawa, Y. Process for Producing Methylal. USPatent 6 379 507, 2002. (78) Yuan, Y. Z.; Liu, H. C.; Imoto, H.; Shido, T.; Iwasawa, Y.J. Catal. 2000, 195, 51. doi: 10.1006/jcat.2000.2990 (79) Yuan, Y. Z.; Shido, T.; Iwasawa, Y. Chem. Commun. 2000, No.15, 1421. (80) Zhang, Y. H.; Drake, I. J.; Briggs, D. N.; Bell, A. T. J. Catal.2006, 244, 219. doi: 10.1016/j.jcat.2006.09.002 (81) Royer, S.; Secordel, X.; Brandhorst, M.; Dumeignil, F.; Cristol,S.; Dujardin, C.; Capron, M.; Payena, E.; Dubois, J. L. Chem. Commun. 2008, No. 7, 865. (82) Gornay, J.; Secordel, X.; Tesquet, G.; de Menorval, B.; Cristol,S.; Fongarland, P.; Capron, M.; Duhamel, L.; Payen, E.;Dubois, J. L.; Dumeignil, F. Green Chem. 2010, 12, 1722. doi: 10.1039/c0gc00194e (83) Fu, Y. C.; Shen, J. Y. Chem. Commun. 2007, No. 21, 2172. (84) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Catal. 2010,272, 176. doi: 10.1016/j.jcat.2010.02.028 (85) Zhao, H. Y.; Bennici, S.; Cai, J. X.; Shen, J. Y.; Auroux, A.J. Catal. 2010, 274, 259. doi: 10.1016/j.jcat.2010.07.011 (86) Dunn, J. P.; Jehng, J. M.; Kim, D. S.; Briand, L. E.; Stenger, H.G.;Wachs, I. E. J. Phys. Chem. B 1998, 102, 6212. doi: 10.1021/jp9814247 (87) Guo, H. Q.; Li, D. B.; Jiang, D.; Li,W. H.; Sun, Y. H. Catal. Commun. 2010, 11, 396. doi: 10.1016/j.catcom.2009.11.009 (88) Lu, X. L.; Qin, Z. F.; Dong, M.; Zhu, H. Q.;Wang, G. F.;Zhao, Y. B.; Fan,W. B.;Wang, J. G. Fuel 2011, 90, 1335. doi: 10.1016/j.fuel.2011.01.007 (89) Chen, S.;Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Commun.2011, No. 47, 9345. (90) Sun, Q.; Liu, J.W.; Cai, J. X.; Fu, Y. C.; Shen, J. Y. Catal. Commun. 2009, 11, 47. doi: 10.1016/j.catcom.2009.08.010 (91) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. Appl. Catal. A-Gen. 2010, 385, 224. doi: 10.1016/j.apcata.2010.07.017 (92) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Therm. Anal. Calorim. 2010, 99, 843. doi: 10.1007/s10973-009-0499-0 (93) Misono, M. Chem. Commun. 2001, No. 13, 1141. (94) Okuhara, T.; Mizuno, N.; Misono, M. Appl. Catal. A-Gen.2001, 222, 63. doi: 10.1016/S0926-860X(01)00830-4 (95) Damyanova, S.; Cubeiro, M. L.; Fierro, J. L. G. J. Mol. Catal. A-Chem. 1999, 142, 85. doi: 10.1016/S1381-1169(98)00279-9 (96) Liu, H. C.; Bayat, N.; Iglesia, E. Angew. Chem. Int. Edit. 2003,42, 5072. doi: 10.1002/(ISSN)1521-3773 (97) Liu, H. C.; Iglesia, E. J. Catal. 2004, 223, 161. (98) Guo, H. Q.; Li, D. B.; Xiao, H. C.; Zhang, J. L.; Li,W. H.;Sun, Y. H. Kor. J. Chem. Eng. 2009, 26, 902. doi: 10.1007/s11814-009-0151-5 (99) Nakka, L.; Molinari, J. E.;Wachs, I. E. J. Am. Chem. Soc.2009, 131, 15544. doi: 10.1021/ja904957d (100) Molinari, J. E.; Nakka, L.; Kim, T.;Wachs, I. E. ACS Catal.2011, 1, 1536. doi: 10.1021/cs2001362 (101) Mol, J. C. Catal. Today 1999, 51, 289. doi: 10.1016/S0920-5861(99)00051-6 (102) Liu, H. C.; Gaigneaux, E. M.; Imoto, H.; Shido, T.; Iwasawa,Y. Appl. Catal. A-Gen. 2000, 202, 251. doi: 10.1016/S0926-860X(00)00539-1 (103) Wachs, I. E.; Deo, G.; Andreini, A.; Vuurman, M. A.; deBoer,M. J. Catal. 1996, 160, 322. doi: 10.1006/jcat.1996.0152 (104) Yuan, Y. Z.; Tsai, K. R.; Liu, H. C.; Iwasawa, Y. Top. Catal.2003, 22, 9. doi: 10.1023/A:1021451309465 (105) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2008, 112, 6487. doi: 10.1021/jp076485w (106) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. J. Am. Chem. Soc.2006, 128, 15082. doi: 10.1021/ja065832x (107) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. Chem.-Eur. J. 2007,13, 3048. doi: 10.1002/(ISSN)1521-3765 (108) Nikonova, O. A.; Capron, M.; Fang, G.; Faye, J.; Mamede, A.S.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Seisenbaeva, G. A.J. Catal. 2011, 279, 310. doi: 10.1016/j.jcat.2011.01.028 (109) Tougerti, A.; Cristol, S.; Berrier, E.; Briois, V.; La Fontaine, C.;Villain, F.; Joly, Y. Phys. Rev. B 2012, 85 (12), 125136. doi: 10.1103/PhysRevB.85.125136 (110) Yang, T. J.; Lunsford, J. H. J. Catal. 1987, 103, 55. doi: 10.1016/0021-9517(87)90092-3 (111) Chan, A. S. Y.; Chen,W. H.;Wang, H.; Rowe, J. E.; Madey, T.E. J. Phys. Chem. B 2004, 108, 14643. doi: 10.1021/jp040168x (112) Liu, J. L.; Zhan, E. S.; Cai,W. J.; Li, J.; Shen,W. J. Catal. Lett.2008, 120, 274. doi: 10.1007/s10562-007-9280-9 (113) Hardcastle, F. D.;Wachs, I. E.; Horsley, J. A.; Via, G. H.J. Mol. Catal. 1988, 46, 15. doi: 10.1016/0304-5102(88)85081-8 (114) Albonetti, S.; Cavani, F.; Trifiro, F. Catal. Rev.-Sci. Eng. 1996,38, 413. doi: 10.1080/01614949608006463 (115) Secordel, X.; Yoboue, A.; Cristol, S.; Lancelot, C.; Capron, M.;Paul, J. F.; Berrier, E. J. Solid State Chem. 2011, 184, 2806.doi: 10.1016/j.jssc.2011.08.002 (116) Zang, L.; Kisch, H. Angew. Chem. Int. Edit. 2000, 39, 3921.doi: 10.1002/(ISSN)1521-3773 (117) Zhan, B. Z.; White, M. A.; Sham, T. K.; Pincock, J. A.; Doucet,R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. J. Am. Chem. Soc. 2003, 125, 2195. doi: 10.1021/ja0282691 (118) Zhan, B. Z.; White, M. A.; Pincock, J. A.; Robertson, K. N.;Cameron, T. S.; Sham, T. K. Can. J. Chem. -Rev. Can. Chim.2003, 81, 764. doi: 10.1139/v03-060 (119) Li,W. Z.; Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2006, 110,23337. doi: 10.1021/jp0648689 (120) Lee, J. S.; Kim, J. C.; Kim, Y. G. Appl. Catal. 1990, 57, 1. doi: 10.1016/S0166-9834(00)80720-4 (121) Jenner, G. Appl. Catal. A-Gen. 1995, 121, 25. (122) Huang, H.; Li,W. Z.; Liu, H. C. Catal. Today 2012, 183, 58.doi: 10.1016/j.cattod.2011.05.021 (123) Lichtenberger, J.; Lee, D.; Iglesia, E. Phys. Chem. Chem. Phys.2007, 9, 4902. (124) Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Baumer,M. Science 2010, 327, 319. doi: 10.1126/science.1183591 (125) Zhan, B. Z.; Iglesia, E. Angew. Chem. Int. Edit. 2007, 46, 3697.doi: 10.1002/(ISSN)1521-3773 (126) Yu, H.; Zeng, K.; Fu, X. B.; Zhang, Y.; Peng, F.;Wang, H. J.;Yang, J. J. Phys. Chem. C 2008, 112, 11875. doi: 10.1021/jp804003g |
[1] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[2] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[3] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[4] | Lin Lv, Liyang Zhang, Xuebing He, Hong Yuan, Shuxin Ouyang, Tierui Zhang. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007079-. |
[5] | Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007089-. |
[6] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[7] | Ping An, Yu Fu, Danlei Wei, Yanglong Guo, Wangcheng Zhan, Jinshui Zhang. Hollow Nitrogen-Rich Carbon Nanoworms with High Activity for Metal-Free Selective Aerobic Oxidation of Benzyl Alcohol [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001025-. |
[8] | Menggang Li, Zhonghong Xia, Yarong Huang, Lu Tao, Yuguang Chao, Kun Yin, Wenxiu Yang, Weiwei Yang, Yongsheng Yu, Shaojun Guo. Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912049-. |
[9] | Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion [J]. Acta Phys. -Chim. Sin., 2020, 36(3): 1907013-. |
[10] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-. |
[11] | Shuyi ZHANG,Jingxian BAO,Bo WU,Liangshu ZHONG,Yuhan SUN. Research Progress on the Photocatalytic Conversion of Methane and Methanol [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 923-939. |
[12] | Jincheng GUO,Yanfen LIN,Na TIAN,Shigang SUN. Modification of Tetrahexahedral Pd Nanocrystals with Ru and Their Performance for Methanol Electro-oxidation [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 749-754. |
[13] | Yazhi YIN,Bing HU,Guoliang LIU,Xiaohai ZHOU,Xinlin HONG. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 327-336. |
[14] | Yanfang LIU,Bing HU,Yazhi YIN,Guoliang LIU,Xinlin HONG. One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2019, 35(2): 223-229. |
[15] | Yanliang ZHAI, Shaolong ZHANG, Luoming ZHANG, Yunshan SHANG, Wenxuan WANG, Yu SONG, Caitong JIANG, Yanjun GONG. Effect of B and Al Distribution in ZSM-5 Zeolite on Methanol to Propylene Reaction Performance [J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1248-1258. |
|