Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (09): 1954-1960    DOI: 10.3866/PKU.WHXB201306261
Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3
SHANGGUAN Peng-Peng1, TONG Shao-Ping1, LI Hai-Li2, LENG Wen-Hua2
1 College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, P. R. China;
2 Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(1142KB) Export: BibTeX | EndNote (RIS)      


It has been reported that applying a certain external anodic potential over un-doped (α-Fe2O3) and Ti-doped α-Fe2O3 (Ti-Fe2O3) electrodes can improve the photocurrent or the photoelectrochemical oxidation rate of water. However, it is assumed in the literature that the potential drops completely across the side of the solid semiconductor (band edge pinning), and the influence of the potential on the interfacial charge-transfer rate constant is rarely reported. In this article, the impact of the applied potential on the interfacial charge-transfer rate constant during photoelectrochemical oxidation of water over the two electrodes was investigated by electrochemical impedance spectroscopy. The results showed that by increasing the applied anodic potential, the interfacial charge-transfer rate constants for both electrodes were increased. The smaller increase in the magnitude of the rate constant than determined by theory indicates that not all of the applied potential drops across the Helmholtz layer, but takes place in both the space charge and Helmholtz layers simultaneously (Fermi level pinning). The results of the surface-state capacitance measurements suggested that the photo-generated charge can be accumulated in the surface states, resulting in the re-distribution of the potential at the interface and an improvement in the rate constant. Under the same applied potential, the higher the light intensity is, the more the photogenerated holes accumulated in the surface states. This causes an increase in the potential drop across the Helmholtz layer and consequently increases the charge-transfer rate constant. Compared with the α-Fe2O3, the improvement of the charge-transfer rate constant by the anodic potential is more obvious.

Key wordsα-Fe2O3      Ti-doped α-Fe2O3      Photoelectrochemical oxidation of water      Potential distribution      Electrochemical impedance spectroscopy      Photoelectrochemistry     
Received: 22 April 2013      Published: 26 June 2013
MSC2000:  O646  

The project was supported by the National Key Basic Research Program of China (973) (2011CB936003) and National Natural Science Foundation of China (50971116).

Corresponding Authors: LENG Wen-Hua     E-mail:
Cite this article:

SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3. Acta Phys. Chim. Sin., 2013, 29(09): 1954-1960.

URL:     OR

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(2) Esswein, M. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022. doi: 10.1021/cr050193e
(3) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.;Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.doi: 10.1021/cr1002326
(4) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414,625. doi: 10.1038/414625a
(5) Abe, R.; Higashi, M.; Domen, K. J. Am. Chem. Soc. 2010, 132,11828. doi: 10.1021/ja1016552
(6) Jin, T.; Xu, D.; Diao, P.; Xiang, M. Acta Phys. -Chim. Sin. 2012,28, 2276. [金涛,许頔,刁鹏,项民.物理化学学报,2012, 28, 2276.] doi: 10.3866/PKU.WHXB201209101
(7) Du, W. P.; Li, Z.; Leng, W. H.; Xu, Y. M. Acta Phys. -Chim. Sin.2009, 25, 1530. [杜卫平,李臻,冷文华, 许宜铭.物理化学学报, 2009, 25, 1530.] doi: 10.3866/PKU.WHXB20090736
(8) Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N.J. Phys. Chem. C 2007, 111, 16477. doi: 10.1021/jp074556l
(9) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128,15714. doi: 10.1021/ja064380l
(10) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.;Hamann, T. W. J. Am. Chem. Soc. 2012, 134, 16693. doi: 10.1021/ja306427f
(11) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug,D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v
(12) Hamann, T. W. Dalton Trans. 2012, 41, 7830. doi: 10.1039/c2dt30340j
(13) Wang, G.; Ling, Y.;Wheeler, D. A.; George, K. E. N.; Horsley,K.; Heske, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3503.doi: 10.1021/nl202316j
(14) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G.D.; McFarland, E. W. J. Phys. Chem. C 2008, 112, 15900. doi: 10.1021/jp803775j
(15) Liu, Y.; Yu, Y. X.; Zhang, W. D. Electrochim. Acta 2012, 59,121. doi: 10.1016/j.electacta.2011.10.051
(16) Hu, Y. S.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland,E. W. Chem. Commun. 2009, 2652.
(17) Le Formal, F.; Tetreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.;Sivula, K. Chem. Sci. 2011, 2, 737. doi: 10.1039/c0sc00578a
(18) Zhang, M.; Luo, W.; Zhang, N.; Li, Z.; Yu, T.; Zou, Z.Electrochem. Commun. 2012, 23, 41. doi: 10.1016/j.elecom.2012.06.040
(19) Kim, J. Y.; Jang, J. W.; Youn, D. H.; Kim, J. Y.; Kim, E. S.; Lee,J. S. RSC Adv. 2012, 2, 9415. doi: 10.1039/c2ra21169f
(20) Upul-Wijayantha, K. G.; Saremi-Yarahmadi, S.; Peter, L. M.Phys. Chem. Chem. Phys. 2011, 13, 5264. doi: 10.1039/c0cp02408b
(21) Leng, W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem. B 2005, 109, 15008. doi: 10.1021/jp051821z
(22) Cheng, X. F.; Leng, W. H.; Liu, D. P.; Xu, Y. M.; Zhang, J. Q.;Cao, C. N. J. Phys. Chem. C 2008, 112, 8725. doi: 10.1021/jp7097476
(23) Oskam, G.; Schmidt, J. C.; Hoffmann, P. M.; Searson, P. C.J. Electrochem. Soc. 1996, 143, 2531. doi: 10.1149/1.1837043
(24) Oskam, G.; Hoffmann, P. M.; Searson, P. C. Phys. Rev. Lett.1996, 76, 1521. doi: 10.1103/PhysRevLett.76.1521
(25) Li, W.; Leng, W. H.; Niu, Z. J.; Li, X.; Fei, H.; Zhang, J. Q.;Cao, C. N. Acta Phys. -Chim. Sin. 2009, 25, 2427. [李文,冷文华,牛振江, 李想, 费会, 张鉴清,曹楚南. 物理化学学报, 2009, 25, 2427.] doi: 10.3866/PKU.WHXB20091210
(26) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.;Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h
(27) Leng, W. H.; Zhang, Z.; Cheng, S. A.; Zhang, J. Q.; Cao, C. N.Chin. Chem. Lett. 2001, 12, 1019.
(28) Shangguan, P.; Tong, S.; Li, H.; Leng, W. RSC Advances 2013,3, 10163. doi: 10.1039/c3ra41439f

[1] RUAN Yi-Fan, ZHANG Nan, ZHU Yuan-Cheng, ZHAO Wei-Wei, XU Jing-Juan, CHEN Hong-Yuan. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Phys. Chim. Sin., 2017, 33(3): 476-485.
[2] CHENG Qing-Li, ZHANG Wei-Hua, TAO Bin. Investigation of the Electrochemical Corrosion of Copper under a Micrometric Electrolyte Droplet Using a Three-Electrode System[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1345-1350.
[3] HU Yu-Xiang, JIANG Chun-Xiang, FANG Liang, ZHENG Fen-Gang, DONG Wen, SU Xiao-Dong, SHEN Ming-Rong. Effect of HF Treatment on the Photoelectrochemical Properties of a Hematite Thin Film Photoanode for Water Splitting[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1099-1106.
[4] LI Song-Mei, YIN Xiao-Lin, LIU Jian-Hua, ZHANG You, XUE Bing. Effect of Doping with Zn-Al-[V10O28]6- Layered Double Hydroxide on the Properties of Hybrid Sol-Gel Coatings on the LY12 Aluminum Surface[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2092-2100.
[5] SUN Xian-Zhong, HUANG Bo, ZHANG Xiong, ZHANG Da-Cheng, ZHANG Hai-Tao, MA Yan-Wei. Experimental Investigation of Electrochemical Impedance Spectroscopy of Electrical Double Layer Capacitor[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2071-2076.
[6] LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan. Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1957-1962.
[7] LUO Bing, XIA Da-Hai. Characterization of pH Effect on Corrosion Resistance of Nuclear Steam Generator Tubing Alloy by In-situ Scanning Electrochemical Microscopy[J]. Acta Phys. Chim. Sin., 2014, 30(1): 59-66.
[8] CHEN Fu-Xiao, FAN Wei-Qiang, ZHOU Teng-Yun, HUANG Wei-Hong. Core-Shell Nanospheres (HP-Fe2O3@TiO2) with Hierarchical Porous Structures and Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2013, 29(01): 167-175.
[9] DAI Yu-Hua, LI Xiao-Jie, FANG Yan-Yan, SHI Qiu-Fei, LIN Yuan, YANG Ming-Shan. Influence of Polymer Gel Electrolyte on the Performance of Dye-Sensitized Solar Cells Analyzed by Electrochemical Impedance Spectroscopy[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2669-2675.
[10] SUN Cheng, LI Xi-Ming, XU Jin, YAN Mao-Cheng, WANG Fu-Hui, WANG Zhen-Yao. Effect of Urea on Microbiologically Induced Corrosion of Carbon Steel in Soil[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2659-2668.
[11] SUN He-Yun, FAN Jia-Ni, HUANG Pei-Pei, SUN Zhong-Xi. Acid-Base Properties and Adsorption Behaviors of Heavy Metal Ions at the Surface of α-Fe2O3/SiO2Nano-Mixed System[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2183-2190.
[12] PANG Ran, ZUO Yu, TANG Yu-Ming, XIONG Jin-Ping. Electrochemical Impedance Spectroscopy Study of Failure Process of an Epoxy/Fluorocarbon Coating System[J]. Acta Phys. Chim. Sin., 2012, 28(05): 1146-1152.
[13] YUAN Zheng, CUI Yong-Li, SHEN Ming-Fang, QIANG Ying-Huai, ZHUANG Quan-Chao. Preparation and Electrochemical Performance of LiTi2(PO4)3/C Composite Cathode for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2012, 28(05): 1169-1176.
[14] XU Zi-Jie, JI Tao, ZHAO Lei, WANG Wei-Yan, YANG Chun-Yan, GAN Li-Hua. Restructured Carbon Aerogels and Their Electrochemical Performances[J]. Acta Phys. Chim. Sin., 2012, 28(02): 361-366.
[15] WANG Ya-Ping, ZHAO Xu-Hui, LU Xiang-Yu, ZUO Yu. Corrosion Protection of Ceria Particles in Mg-Rich Primer on AZ91D Magnesium Alloy[J]. Acta Phys. Chim. Sin., 2012, 28(02): 407-413.