Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (12): 2543-2550    DOI: 10.3866/PKU.WHXB201310232
Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals
YU Hai-Ling1, ZHANG Meng-Ying2, HONG Bo1, CHENG Zhi Qiang1, WANG Jiao2, TIAN Dong-Mei2, QIU Yong-Qing2
1 College of Resources and Environmental Science, Jinlin Agricultural University, Changchun 130118, P. R. China;
2 Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
Download:   PDF(924KB) Export: BibTeX | EndNote (RIS)      


The geometries, polarizabilities (αs), and first hyperpolarizabilities (βtot) of a series of green fluorescent protein chromophore coupled diradicals and their corresponding optical isomers were investigated using density functional theory (DFT). The results show that the introductions of the electron donor/acceptor significantly enhance the polarizabilities and have a different influence on the first hyperpolarizabilities. For trans isomers, the βtot values of the studied compounds increase with increasing strength of the electron-withdrawing ability of the substituent, whereas the βtot values decrease significantly with increasing strength of the electron-donating ability of the substituent. For cis isomers, the trends in the changes in the βtot values are the opposite of those for trans isomers on introduction of a donor/acceptor. Significantly, photoisomerization can lead to the different βtot values. The βtot values of cis isomers are smaller than those of trans isomers when electron acceptors are introduced. For example, the βtot value of the cis isomer with the strongest electron acceptor, i.e., ―NO2, is about 1/6 that of the corresponding trans isomer. However, the βtot values of trans isomers are smaller than those of cis isomers when electron donors are introduced. For example, the βtot value of the trans isomer with the strongest electron donor, i.e., ―NH2, is about six times smaller than that of the corresponding cis isomer. As a result, photoisomerization can modulate the molecular nonlinear optical (NLO) responses effectively.

Key wordsDiradical      Non linear optical property      Photoisomerization      Switch      Density functional theory     
Received: 29 July 2013      Published: 23 October 2013
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21173035).

Corresponding Authors: QIU Yong-Qing     E-mail:
Cite this article:

YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals. Acta Phys. -Chim. Sin., 2013, 29(12): 2543-2550.

URL:     OR

(1) Nakano, M.; Yamaguchi, K. J. Chem. Phys. Lett. 1993, 206,285. doi: 10.1016/0009-2614(93)85553-Z
(2) Ma, N. N.; Sun, S. L.; Liu, C. G.; Sun, X. X.; Qiu, Y. Q. J. Phys. Chem. A 2011, 115, 13564. doi: 10.1021/jp206003n
(3) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y.Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]doi: 10.3866/PKU.WHXB20110236
(4) Liu, C. G.; Guan, X. H.; Su, Z. M. J. Phys. Chem. C 2011, 115,6024. doi: 10.1021/jp111797n
(5) Nakano, M.; Nagao, H.; Yamaguchi, K. Chem. Phys. Lett. 1999,311, 221. doi: 10.1016/S0009-2614(99)00852-0
(6) Zhong, R. L.; Xu, H. L.; Su, Z. M.; Li, Z. R.; Sun, S. L.; Qiu, Y.Q. ChemPhysChem 2012, 13, 2349. doi: 10.1002/cphc.v13.9
(7) Ohta, S.; Nakano, M.; Kubo, T. J. Phys. Chem. A 2007, 111,3633. doi: 10.1021/jp0713662
(8) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303. doi: 10.1039/c1cs15165g
(9) Coe, B. J.; Fielden, J.; Foxon, S. P.; Harris, J. A.; Helliwell, M.;Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna,J. J. Am. Chem. Soc. 2010, 132, 10498. doi: 10.1021/ja103289a
(10) Leïla, B. L.; Coe, B. J.; Clays, K.; Foerier, S.; Verbiest, T.;Asselberghs, I. J. Am. Chem. Soc. 2008, 130, 3286. doi: 10.1021/ja711170q
(11) Nakazaki, J.; Chung, I.; Matsushita, M. M.; Sugawara, T.;Watanabe, R.; Izuoka, A.; Kawada, Y. J. Mater. Chem. 2003, 13,1011. doi: 10.1039/b211986b
(12) Caneschi, A.; Gatteschi, D.; Rey, P.; Sessoli, R. Inorg. Chem.1991, 30, 3936. doi: 10.1021/ic00020a029
(13) Angeloni, L.; Caneschi, A.; David, L.; Fabretti, A.; Ferraro, F.;Gatteschi, D.; Lirzin, A. L.; Sessoli, R. J. Mater. Chem. 1994, 4,1047. doi: 10.1039/jm9940401047
(14) Coe, B. J.; Harris, J. A.; Jones, L. A. J. Am. Chem. Soc. 2005,127, 4845. doi: 10.1021/ja0424124
(15) Muhammad, S.; Xu, H. L.; Liao, Y.; Kan, Y. H.; Su, Z. M.J. Am. Chem. Soc. 2009, 131, 11833. doi: 10.1021/ja9032023
(16) Nakatani, K.; Delaire, J. A. Chem. Mater. 1997, 9, 2682. doi: 10.1021/cm970369w
(17) Ma, N. N.; Yan, L. K.; Guan,W.; Qiu, Y. Q.; Su, Z. M. Phys. Chem. Chem. Phys. 2012, 14, 5605. doi: 10.1039/c2cp00054g
(18) Liu, C. G.; Su, Z. M.; Guan, X. H.; Muhammad, S. J. Phys. Chem. C 2011, 115, 23946. doi: 10.1021/jp2049958
(19) Brook, D. J. R.; Yee, G. T. J. Org. Chem. 2006, 71, 4889. doi: 10.1021/jo060165b
(20) Herebian, D.;Wieghardt, K. E.; Neese, F. J. Am. Chem. Soc.2003, 125, 10997. doi: 10.1021/ja030124m
(21) Muhammad, S.; Xu, H. L.; Janjua, M. R. S. A.; Su, Z. M.;Nadeem, M. Phys. Chem. Chem. Phys. 2010, 12, 4791. doi: 10.1039/b924241d
(22) Wang, C. H.; Ma, N. N.; Sun, X. X.; Sun, S. L.; Qiu, Y. Q.; Liu,P. J. J. Phys. Chem. A 2012, 116, 10496. doi: 10.1021/jp3062288
(23) Lamère, J. F.; Sasaki, I.; Lacroix, P. G. New J. Chem. 2006, 30,921. doi: 10.1039/b601315e
(24) Sun, X. X.; Ma, N. N.; Li, X. J.; Sun, S. L.; Xie, H. M.; Qiu, Y.Q. J. Organomet. Chem. 2012, 38, 3384.
(25) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509
(26) Voliani, V.; Bizzarri, R.; Nifosì, R.; Abbruzzetti, S.; Grandi, E.;Viappiani, C.; Beltram, F. J. Phys. Chem. B 2008, 112,10714. doi: 10.1021/jp802419h
(27) Meulenaere, E. D.; Bich, N. N.;Wergifosse, M. D.; Hecke, K.V.; Meervelt, L. V.; Vanderleyden, J.; Champagne, B.; Clays, K.J. Am. Chem. Soc. 2013, 135, 4061. doi: 10.1021/ja400098b
(28) Bhattacharya, D.; Panda, A.; Shil, S.; Goswamia, T.; Misra, A.Phys. Chem. Chem. Phys. 2012, 14, 6905. doi: 10.1039/c2cp00053a
(29) Shil, S.; Misra, A. J. Phys. Chem. A 2010, 114, 2022. doi: 10.1021/jp910661g
(30) Limacher, P. A.; Mikkelsen, K. V.; Luthi, H. P. J. Chem. Phys.2009, 130, 1941141.
(31) Wang, F. F.; Li, Z. R.;Wu, D.;Wang, B. Q.; Li, Y.; Li, Z. J.;Chen,W.; Yu, G. T.; Gu, F. L.; Aoki, Y. J. Phys. Chem. B 2008,112, 1090.
(32) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993,97, 1158. doi: 10.1021/j100108a010
(33) Chopra, P.; Carlacci, L.; King, H. F.; Prasad, P. N. J. Phys. Chem. 1989, 93, 3304. doi: 10.1021/j100345a082
(34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09 W, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[6] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[7] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[8] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[9] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[10] Ze YU,Xiaohong LI,Yunchao LI,Mingfu YE. K+ Concentration-Dependent Conformational Change of Pb2+-Stabilized G-quadruplex[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1293-1298.
[11] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[12] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[13] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[14] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[15] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.