Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (1): 67-74    DOI: 10.3866/PKU.WHXB201311143
ELECTROCHEMISTRY AND NEW ENERGY     
Effect of Alkali Concentration, Oxygen Partial Pressure and Temperature on Oxygen Reduction Reaction on Pt Electrode in NaOH Solution
PENG Zhong1,2,3, YAN Wen-Yi2, WANG Shao-Na2, ZHENG Shi-Li2, DU Hao2, ZHANG Yi2
1 School of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China;
2 National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China;
3 National Engineering Research Center of Distillation Technology, Tianjin 300072, P. R. China
Download:   PDF(886KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this study, the influences of alkali concentration, oxygen partial pressure, and temperature on the oxygen reduction reaction (ORR) were examined in detail, using a specially designed electrochemical cell, by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in NaOH solutions. It was found that the ORR pathway is dependent on the solution alkalinity, and is transformed from a two-electron reduction by forming HO2- in dilute solutions to a one-electron reduction by forming stable O2- in concentrated solutions. The process was significantly suppressed by decreases in the oxygen solubility and increases in the media viscosity. The oxygen pressure had a significant influence on the ORR, substantially promoting the ORR in alkaline solutions as a result of the greatly increased solubility of oxygen in the solutions. We obtained the Henry's constants of oxygen in NaOH solutions with different concentrations. The temperature had a clear dual effect on the ORR, as shown by the existence of an optimal temperature for the ORR in a given alkaline solution. These observations are discussed in terms of the oxygen reaction activity, oxygen solubility, and diffusion coefficient.



Key wordsCyclic voltammetry      Linear sweep voltammetry      Oxygen reduction reaction      Henry’s constant      Reactivity      Solubility      Diffusion coefficient     
Received: 24 September 2013      Published: 14 November 2013
MSC2000:  O646  
  O642  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2013CB632601) and National Natural Science Foundation of China (51274178, 51274179, 51090382).

Corresponding Authors: DU Hao     E-mail: hdu@home.ipe.ac.cn
Cite this article:

PENG Zhong, YAN Wen-Yi, WANG Shao-Na, ZHENG Shi-Li, DU Hao, ZHANG Yi. Effect of Alkali Concentration, Oxygen Partial Pressure and Temperature on Oxygen Reduction Reaction on Pt Electrode in NaOH Solution. Acta Phys. Chim. Sin., 2014, 30(1): 67-74.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201311143     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2014/V30/I1/67

(1) Zhang, L. P.; Xia, Z. H. J. Phys. Chem. C 2011, 115, 11170.doi: 10.1021/jp201991j
(2) Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B2005, 109 (48), 22909. doi: 10.1021/jp054815b
(3) Li, Z. P.; Liu, B. H. J. Appl. Electrochem. 2010, 40, 475. doi: 10.1007/s10800-009-0028-7
(4) Petlicki, J.; van de Ven, T. G. M. J. Chem. Soc., Faraday Trans.1998, 94, 2763. doi: 10.1039/a804551h
(5) Liu, B.; Bard, A. J. J. Phys. Chem. B 2002, 106 (49), 12801.doi: 10.1021/jp026824f
(6) Huang, J. S.; Zhang, X. G. Acta Phys. -Chim. Sin. 2006, 22,1551. [黄建书, 张校刚. 物理化学学报, 2006, 22, 1551.]doi: 10.3866/PKU.WHXB20061223
(7) Sawyer, D. T.; Jr, G. C.; Angells, C. T.; Nanni, E. J., Jr.;Tsuchlya, T. Anal. Chem. 1982, 54 (11), 1720. doi: 10.1021/ac00248a014
(8) Liu, Z. X.; Li, Z. P.; Qin, H. Y.; Liu, B. H. J. Power. Sources2011, 196 (11), 4972. doi: 10.1016/j.jpowsour.2011.01.102
(9) Schmidt, T. J.; Stamenkovic, V.; Markovic, N. M.; Ross, P. N.,Jr. Electrochim. Acta 2002, 47 (22), 3765.
(10) Genies, L.; Faure, R.; Durand, R. Electrochim. Acta 1998, 44 (8), 1317.
(11) Jin,W.; Du, H.; Zheng, S. L.; Xu, H. B.; Zhang, Y. J. Phys. Chem. B 2010, 114 (19), 6542. doi: 10.1021/jp102367u
(12) Zhang, C. Z.; Fu-Ren, F. F.; Bard, A. J. J. Am. Chem. Soc. 2009,131 (1), 177. doi: 10.1021/ja8064254
(13) Blizanac, B. B.; Ross, P. N.; Markovic, N. M. J. Phys. Chem. B2006, 110 (10), 4735.
(14) Li, X.; Heryadi, D.; Gewirth, A. A. Langmuir 2005, 21 (20),9251. doi: 10.1021/la0508745
(15) Adzic, R. R.; Strbac, S.; Anastasijevic, N. Mater. Chem. Phys.1989, 22 (3), 349.
(16) Song, C. J.; Zhang, L.; Zhang, J. J. J. Electroanal. Chem. 2006,587 (2), 293. doi: 10.1016/j.jelechem.2005.11.025
(17) Wang, Y.; Zhang, D.; Liu, H. Q. J. Power Sources 2010, 195 (10), 3135. doi: 10.1016/j.jpowsour.2009.11.112
(18) Johnson, E. L.; Pool, K. H.; Hamm, R. E. Anal. Chem. 1966, 38 (2), 183. doi: 10.1021/ac60234a008
(19) Peuchert, M.; Yoneda, T.; Dalla Betta, R. A.; Boudart, M.J. Electrochem. Soc. 1986, 133 (5), 944. doi: 10.1149/1.2108769
(20) Mukerjee, S. J. Appl. Electrochem. 1990, 20 (4), 537. doi: 10.1007/BF01008861
(21) Li, B.; Prakash, J. Electrochem. Commun. 2009, 11 (6), 1162.doi: 10.1016/j.elecom.2009.03.037
(22) Reeve, R.W.; Tseung, A. C. C. J. Electroanal. Chem. 1996, 403 (1), 69.
(23) Li, J. C. M.; Chang, P. J. Chem. Phys. 1955, 23, 518. doi: 10.1063/1.1742022
(24) Sab, N.; Claes, P.; Glibert, J. Electrochim. Acta 1998, 43 (14),2089.
(25) Milers, M. H. J. Appl. Electrochem. 2003, 33 (11), 1011. doi: 10.1023/A:1026270119048
(26) Wagner, F. T.; Ross, P. N., Jr. Appl. Surf. Sci. 1985, 24 (1), 87.doi: 10.1016/0169-4332(85)90214-4
(27) Teliska, M. T.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E.J. Electrochem. Soc. 2005, 152 (11), A2159.
(28) Nicholson, R. S. Anal. Chem. 1965, 37 (11), 1351. doi: 10.1021/ac60230a016
(29) Tromans, D. Ind. Eng. Chem. Res. 2000, 39 (3), 805. doi: 10.1021/ie990577t
(30) Davis, R. R.; Horvath, G. L.; Tobias, C.W. Electrochim. Acta1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0
(31) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128 (23), 7408. doi: 10.1021/ja061246s
(32) Randin, J. P. Electrochim. Acta 1974, 19 (2), 83. doi: 10.1016/0013-4686(74)85060-7
(33) Che, Y.; Tsushima, M.; Matsumoto, F.; Okajima, T.; Tokuda, K.;Ohsaka, T. J. Phys. Chem. 1996, 100 (51), 20134. doi: 10.1021/jp9625523
(34) Cao, R. Y. Journal of Tongji University 2001, 29, 826. [曹瑞钰. 同济大学学报, 2001, 29, 826.]

[1] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. Chim. Sin., 2018, 34(3): 314-322.
[2] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. Chim. Sin., 2018, 34(2): 201-207.
[3] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[4] SHEN Hai-Bo, JIANG Hao, LIU Yi-Si, HAO Jia-Yu, LI Wen-Zhang, LI Jie. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1811-1821.
[5] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1429-1435.
[6] ZHAI Xiao, DING Yi. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1366-1378.
[7] QU Hong-Mei, CHONG Ze-Peng, CHEN Xu, MEN Yi-Can, SHEN Hai-Jiao. Synthesis and Properties of a Series of Dinaphthosiloles[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1253-1260.
[8] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(5): 886-902.
[9] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. Chim. Sin., 2017, 33(2): 283-294.
[10] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. Chim. Sin., 2017, 33(1): 149-164.
[11] GONG Xu-Li, ZHANG Chang-Qiao, NING Peng-Ge, CAO Hong-Bin, ZHANG Yi. Solubility of NH4VO3 in NH4H2PO4-H2O and (NH4)3PO4-H2O Systems[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1134-1142.
[12] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[13] JIANG Tao, WANG Ning, CHENG Chang-Ming, PENG Shu-Ming, YAN Liu-Ming. Molecular Dynamics Simulation on the Structure and Thermodynamics of Molten LiCl-KCl-CeCl3[J]. Acta Phys. Chim. Sin., 2016, 32(3): 647-655.
[14] LU Xiang, CHEN Xun, WANG Ya-Shun, TAN Yuan-Yuan, GAOMU Zi-Yuan. Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2523-2530.
[15] ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2462-2474.