Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (2): 382-388    DOI: 10.3866/PKU.WHXB201312032
Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation
LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
Download:   PDF(1286KB) Export: BibTeX | EndNote (RIS)      


Co3O4 nanocubes that were exclusively terminated with {100} facets of edge size 10 nm were solvothermally fabricated in a mixed solution of ethanol and triethylamine. Analyses of the structural evolution of the intermediates at different intervals during the synthesis, together with an examination of the influences of the cobalt precursor and solvent on the product structure, showed that the formation of Co3O4 nanocubes followed a dissolution-recrystallization mechanism. After calcination at 200 ℃, the as-synthesized Co3O4 material retained a cubic morphology with the same edge size, but calcination at 400 ℃ resulted in the formation of spherical Co3O4 particles of diameter about 13 nm. The Co3O4 nanocubes exhibited inferior activity in room-temperature CO oxidation compared with Co3O4 nanoparticles ({111} facets), primarily as a result of the exposure of the less- reactive {100} facets, demonstrating the morphology effect of Co3O4 nanomaterials.

Key wordsCo3O4      Solvothermal synthesis      Morphology-dependence      Nanocube      CO oxidation     
Received: 14 October 2013      Published: 03 December 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20923001, 21025312).

Corresponding Authors: SHEN Wen-Jie     E-mail:
Cite this article:

LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation. Acta Phys. Chim. Sin., 2014, 30(2): 382-388.

URL:     OR

(1) Zhu, J. B.; Bai, L. F.; Sun, Y. F.; Zhang, X. D.; Li, Q. Y.; Cao, B.X.; Yan,W. S.; Xie, Y. Nanoscale 2013, 5, 5241. doi: 10.1039/c3nr01178j
(2) Tong, G. X.; Guan, J. G.; Zhang, Q. J. Adv. Funct. Mater. 2013,23, 2406. doi: 10.1002/adfm.v23.19
(3) Xiao, J.; Kuang, Q.; Yang, S.; Xiao, F.;Wang, S.; Guo, L. Sci. Rep. 2013, 3, 2300.
(4) Zhang, S. R.; Shan, J. J.; Zhu, Y.; Frenkel, A. I.; Patlolla, A.;Huang,W. X.; Yoon, S. J.;Wang, L.; Yoshida, H.; Takeda, S.;Tao, F. F. J. Am. Chem. Soc. 2013, 135, 8283. doi: 10.1021/ja401967y
(5) Xie, X.W.; Shen,W. J. Nanoscale 2009, 1, 50. doi: 10.1039/b9nr00155g
(6) Li, Y. H.; Huang, K. L.; Zeng, D. M.; Liu, S. Q. Prog. Chem.2010, 22, 2119. [李艳华, 黄可龙, 曾冬铭, 刘素琴. 化学进展,2010, 22, 2119.]
(7) Wang, Y.; Zhong, Z. Y.; Chen, Y.; Ng, C. T.; Lin, J. Y. Nano Res.2011, 4, 695. doi: 10.1007/s12274-011-0125-x
(8) Zhang, G. L.; Zhao, D.; Guo, P. Z.;Wei, Z. B.; Zhao, X. S. Acta Phys. -Chim. Sin. 2012, 28, 387. [张国梁, 赵丹, 郭培志, 位忠斌, 赵修松. 物理化学学报, 2012, 28, 387.] doi: 10.3866/PKU.WHXB201111241
(9) Jiao, Q. Z.; Fu, M.; You, C.; Zhao, Y.; Li, H. S. Inorg. Chem.2012, 51, 11513. doi: 10.1021/ic3013602
(10) Liu, Y. J.; Zhu, G. X.; Ge, B. L.; Zhou, H.; Yuan, A. H.; Shen,X. P. CrystEngComm 2012, 14, 6264. doi: 10.1039/c2ce25788b
(11) Yan, N.; Hu, L.; Li, Y.;Wang, Y.; Zhong, H.; Hu, X. Y.; Kong,X. K.; Chen, Q.W. J. Phys. Chem. C 2012, 116, 7227. doi: 10.1021/jp2126009
(12) Liu, X. M.; Long, Q.; Jiang, C. H.; Zhan, B. B.; Li, C.; Liu, S.J.; Zhao, Q.; Huang,W.; Dong, X. C. Nanoscale 2013, 5,6525. doi: 10.1039/c3nr00495c
(13) Ren, Z.; Guo, Y. B.; Zhang, Z. H.; Liu, C. H.; Gao, P. X.J. Mater. Chem. A 2013, 1, 9897. doi: 10.1039/c3ta11156c
(14) Wang, C. A.; Li, S.; An, L. N. Chem. Commun. 2013, 49,7427. doi: 10.1039/c3cc43094d
(15) Lv, Y. G.; Li, Y.; Shen,W. J. Catal. Commun. 2013, 42, 116. doi: 10.1016/j.catcom.2013.08.017
(16) Wang, M. S.; Chen, Q.W. Chem. Eur. J. 2010, 16, 12088. doi: 10.1002/chem.v16:40
(17) Xu, R.; Zeng, H. C. Langmuir 2004, 20, 9780. doi: 10.1021/la049164+
(18) He, T.; Chen, D. R.; Jiao, X. L.;Wang, Y. L.; Duan, Y. Z. Chem. Mater. 2005, 17, 4023. doi: 10.1021/cm050727s
(19) Hu, L. H.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. 2008, 130,16136. doi: 10.1021/ja806400e
(20) Yang, J. H.; Sasaki, T. Cryst. Growth Des. 2010, 10, 1233.doi: 10.1021/cg9012284
(21) Zhu, T.; Chen, J. S.; Lou, X.W. J. Mater. Chem. 2010, 20,7015. doi: 10.1039/c0jm00867b
(22) Teng, Y. H.; Yamamoto, S.; Kusano, Y.; Azuma, M.;Shimakawa, Y. Mater. Lett. 2010, 64, 239. doi: 10.1016/j.matlet.2009.10.039
(23) Song, X. C.;Wang, X.; Zheng, Y. F.; Ma, R.; Yin, H. Y.J. Nanopart. Res. 2011, 13, 1319. doi: 10.1007/s11051-010-0127-8
(24) Hu, L.; Yan, N.; Chen, Q.W. Zhang, P.; Zhong, H.; Zheng, X.R.; Li, Y.; Hu, X. Y. Chem. Eur. J. 2012, 18, 8971. doi: 10.1002/chem.v18.29
(25) Li, Y. L.; Zhao, J. Z.; Dan, Y. Y.; Ma, D. C.; Zhao, Y.; Hou, S.N.; Lin, H. B.;Wang, Z. C. Chem. Eng. J. 2011, 166, 428. doi: 10.1016/j.cej.2010.10.080
(26) Sun, C.; Su, X. T.; Xiao, F.; Niu, C. G.;Wang, J. D. Sensor Actuat. B-Chem. 2011, 157, 681. doi: 10.1016/j.snb.2011.05.039
(27) Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F. B.; Qiao, S. Z.;Lou, X.W. ACS Appl. Mater. Interfaces 2010, 2, 3628. doi: 10.1021/am100787w
(28) Wang, M. S.; Zeng, L. K.; Chen, Q.W. Dalton Trans. 2011, 40,597. doi: 10.1039/c0dt00946f
(29) Feng, J.; Zeng, H. C. Chem. Mater. 2003, 15, 2829. doi: 10.1021/cm020940d
(30) Xu, R.; Zeng, H. C. J. Phys. Chem. B 2003, 107, 926. doi: 10.1021/jp021094x
(31) Guo, B.; Li, C. S.; Yuan, Z. Y. J. Phys. Chem. C 2010, 114,12805. doi: 10.1021/jp103705q
(32) Xie, X.W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen,W. J. Nature2009, 458, 746. doi: 10.1038/nature07877
(33) Xie, X.W.; Shang, P. J.; Liu, Z. Q.; Lv, Y. G.; Li, Y.; Shen,W. J.J. Phys. Chem. C 2010, 114, 2116. doi: 10.1021/jp911011g
(34) Broqvist, P.; Panas, I.; Persson, H. J. Catal. 2002, 210, 198. doi: 10.1006/jcat.2002.3678
(35) Jiang, D. E.; Dai, S. Phys. Chem. Chem. Phys. 2011, 13, 978.doi: 10.1039/c0cp01138j
(36) Pang, X. Y.; Liu, C.; Li, D. C.; Lv, C. Q.;Wang, G. C.ChemPhysChem 2013, 14, 204. doi: 10.1002/cphc.201200807
(37) Liu, Z. P.; Ma, R. Z.; Osada, M.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2005, 127, 13869. doi: 10.1021/ja0523338
(38) Xu, Z. P.; Zeng, H. C. Chem. Mater. 1999, 11, 67. doi: 10.1021/cm980420b
(39) Cao, A. M.; Hu, J. S.; Liang, H. P.; Song,W. G.;Wan, L. J.; He,X. L.; Gao, X. G.; Xia, S. H. J. Phys. Chem. B 2006, 110,15858. doi: 10.1021/jp0632438
(40) Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Nano Res.2010, 3, 363. doi: 10.1007/s12274-010-1040-2

[1] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[2] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1453-1461.
[3] CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2424-2437.
[4] GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1674-1680.
[5] JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1801-1809.
[6] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. Chim. Sin., 2016, 32(1): 48-60.
[7] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1753-1760.
[8] HUANG Guo-Yong, XU Sheng-Ming, LI Lin-Yan, WANG Xue-Jun, LU Sha-Sha. Synthesis and Modification of a Lamellar Co3O4 Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1121-1126.
[9] TAN Hai-Yan, WU Jin-Ping. Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2014, 30(4): 715-722.
[10] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(1): 129-134.
[11] SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2451-2458.
[12] LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Phys. Chim. Sin., 2013, 29(05): 1055-1062.
[13] WANG Fang, WANG Cai-Hong, LI Da-Zhi. Novel Method of Controlling Formation of Hot-Spot over Gold Catalysts for CO Oxidation[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1455-1460.
[14] NIE Su-Lian, ZHAO Yan-Chun, FAN Jie-Wen, TIAN Jian-Niao, NING Zhen, LI Xiao-Xiao. Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation[J]. Acta Phys. Chim. Sin., 2012, 28(04): 871-876.
[15] ZHANG Guo-Liang, ZHAO Dan, GUO Pei-Zhi, WEI Zhong-Bin, ZHAO Xiu-Song. Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires[J]. Acta Phys. Chim. Sin., 2012, 28(02): 387-392.