Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (3): 691-700    DOI: 10.3866/PKU.WHXB201512182
Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm
LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi
College of Chemistry and Pharmaceutical Science, Qingdao Agriculture University, Qingdao 266109, Shandong Province, P. R. China
Download:   PDF(5964KB) Export: BibTeX | EndNote (RIS)      


Different charged functional groups including ―COO- and ―NH3+ were added to the interior and entrance of (15,15) armchair carbon nanotubes (CNTs) with a diameter larger than 2 nm to construct membranes that imitated the structure of the protein aquaporin-4. The potential of mean force, conductance, and density distributions of ions in the CNTs were calculated. The results showed that under 200 MPa, CNTs modified with oppositely charged groups in their interior and at their entrance could greatly improve salt desalination on the basis of high water flux. When five pairs of ―COO- and ―NH3+ functional groups were added to the interior of a CNT or four pairs of ―COO- and ―NH3+ functional groups were added to the interior of a CNT with another pair at the entrance, 100% Cl- rejection and 88% Na+ rejection were achieved. The lowest water conductivity of the functionalized CNTs was 4.6 times that of (8,8) unfunctionalized CNTs, and even slightly lower than that of unfunctionalized (15,15) CNTs.

Key wordsMolecular dynamics simulation      Biomimetic modification      Reverse osmosis membrane      Diameter larger than 2 nm      Carbon nanotube      Desalination     
Received: 23 September 2015      Published: 18 December 2015
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21306096).

Corresponding Authors: LIU Qing-Zhi     E-mail:
Cite this article:

LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm. Acta Phys. -Chim. Sin., 2016, 32(3): 691-700.

URL:     OR

(1) Oki, T.; Kanae, S. Science 2006, 313, 1068. doi: 10.1126/science.1128845
(2) Field, C. B.; Barros, V. R.; Mastrandrea, M. D.; Mach, K. J.; Abdrabo, M. A. K.; Adger, W. N.; Douglas, J. A; Jonathon, B.Contribution of Working Group II to the Third Assessment Report 2014, 56, 81.
(3) World, T.; Assessment, W.; Talafre, P. J.; Their, F. K. F.Piarnorgau 2009, 128, 343.
(4) Zhou, Y.; Yu, S. Z.; Gao, C. K. Journal of Chemical Industry and Engineering (China) 2006, 57, 1370. [周勇, 俞三传, 高从堦. 化工学报, 2006, 57, 1370.] doi: 10.3321/j.issn: 0438-1157.2006.06.019
(5) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414, 188. doi: 10.1038/35102535
(6) Striolo, A. Nano Lett. 2006, 6, 633. doi: 10.1021/nl052254u
(7) Amrit, K.; Shekhar, G.; Gerhard, H. Proceedings of the National Academy of Sciences of the United States of America2003, 100, 10175. doi: 10.1073/pnas.1633354100
(8) Holt, J. K.; Park, H. K.; Wang, Y.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Science2006, 312, 1034. doi: 10.1126/science.1126298
(9) Majumder, M.; Chopra, N.; Andrews. R.; Hinds B. J. Nature2005, 438, 44. doi: 10.1038/438044a
(10) Corry, B. The Journal of Physical Chemistry B 2008, 112, 1427. doi: 10.1021/jp709845u
(11) Thomas, M.; Corry, B.; Hilder, T. A. Small 2014, 10, 1453. doi: 10.1002/smll.v10.8
(12) Chen, S.; Corry, B. Journal of Physical Chemistry B 2009, 113, 7642. doi: 10.1021/jp810102u
(13) Corry, B. Energy & Environmental Science 2011, 3, 751. doi: 10.1039/C0EE00481B
(14) Zheng, J.; Lennon, E. M; Tsao, H. K.; Sheng, Y. J.; Jiang, S.Journal of Chemical Physics 2005, 122, 279. doi: 10.1063/1.1908619
(15) Zhu, Y.; Wei. M.; Shao, Q.; Lu, L.; Lu, X.; Shen, W. Journal of Physical Chemistry C 2008, 113, 882. doi: 10.1021/jp8089006
(16) Gong, X. J.; Li, J. C.; Xu, K.; Wang, J. F.; Yang, H. Journal of the American Chemical Society 2010, 132, 1873. doi: 10.1021/ja905753p
(17) Kyotani, T.; Nakazaki, S.; Xu, W. H.; Tomita, A. Carbon 2001, 39, 782. doi: 10.1016/S0008-6223(01)00013-6
(18) Alsawat, M.; Altalhi, T.; Kumeria, T.; Santos, A.; Losic, D.Carbon 2015, 93, 681. doi: 10.1016/j.carbon.2015.05.090
(19) Altalhi, T.; Basiuk, E. V.; Rizo, J.; Basiuk, V. A.; Ginic-Markovic, M.; Clarke, S.; Clarke, S.; Losic, D. Chemeca 2012: Quality of Life Through Chemical Engineering 2012, 23, 1712.
(20) Yang, D. F.; Liu, Q. Z.; Li, H. M.; Gao, C. K. Chinese Journal of Appilied Chemistry 2014, 31 (11), 1345. [杨登峰, 刘清芝, 李红曼, 高从堦. 应用化学, 2014, 31 (11), 1345.] doi: 10.3724/SP.J.1095.2014.30622
(21) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289
(22) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f
(23) Zhu, F.; Tajkhorshid, E.; Schulten, K. Biophysical Journal2002, 83, 154. doi: 10.1016/S0006-3495(02)75157-6
(24) Zhu, F.; Tajkhorshid, E. Biophysical Journal 2004, 86, 50. doi: 10.1016/S0006-3495(04)74082-5
(25) Eric, D.; David, R. G.; Andrew, P. Journal of Chemical Physics2008, 128, 144120. doi: 10.1063/1.2829861
(26) Li, Q.; Yang, D. F.; Shi, J. S.; Xu, X.; Yan, S. H.; Liu, Q. Z.Desalination 2016, 379, 164.
(27) Allen, T.W.; Kuyucak, S.; Chung, S. H. Journal of Chemical Physics 1999, 111, 7985. doi: 10.1063/1.480132

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[2] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[3] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[4] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[5] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[7] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[8] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[9] LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[10] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.
[11] WU Shao-Gui, FENG Dan. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1282-1288.
[12] LIU Zi-Yu, LIAO Qi, JIN Zhi-Qiang, ZHANG Lei, ZHANG Lu. Effect of Electrolytes on the Interfacial Behavior of Nonionic-Anionic Surfactant Solutions Using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1168-1174.
[13] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1029-1035.
[14] XIE Wei, XU Ze-Ren, WANG Ming, XU Si-Chuan. Molecular Dynamics Simulation for Levo-Benzedrine to Transmit through Molecular Channels within D3R[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 907-920.
[15] MENG Xian-Mei, ZHANG Shao-Long, ZHANG Qing-Gang . Effect of the Allosteric Inhibitor Efavirenz on HIV-1 Reverse Transcriptase by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 436-444.