Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (4): 921-928    DOI: 10.3866/PKU.WHXB201512251
Article     
Pyrolysis of Octanitrocubane via Molecular Dynamics Simulations
YANG Zhen, HE Yuan-Hang
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Biejing 100081, P. R. China
Download:   PDF(5958KB) Export: BibTeX | EndNote (RIS)      

Abstract  

As the requirements for the performance of high-energy-density materials increase, research to develop new types of high-energy-density materials has become highly heated recently. Octanitrocubane, by virtue of its superior performance, is one of the typical representatives of recently developed high-energy-density materials. However, there have been few studies on the thermal decomposition mechanism of octanitrocubane, even though they are essential to analyze the thermostability and sensitivity of octanitrocubane, as well as to achieve its efficient application. In this study, the initial pyrolysis process of condensed-phase octanitrocubane at high temperature was investigated using ReaxFF reactive molecular dynamics simulation. The results showed that it is the C-C bond of the octanitrocubane cage skeleton structure that breaks first, and then octanitrocubane cage skeleton structure is gradually destroyed, and the small molecules such as NO2 and O occur afterwards. The simulation identified three different damage pathways of the cage skeleton. The main products of octanitrocubane thermal decomposition at high temperature are NO2, O2, CO2, N2, NO3, NO, CNO, and CO, of which N2 and CO2 are the final products. The products that form depend on temperature.



Key wordsReaxFF      Pyrolysis      Molecular dynamics      Octanitrocubane      Reaction mechanism     
Received: 14 October 2015      Published: 25 December 2015
MSC2000:  O643  
  O642  
Corresponding Authors: HE Yuan-Hang     E-mail: heyuanhang@bit.edu.cn
Cite this article:

YANG Zhen, HE Yuan-Hang. Pyrolysis of Octanitrocubane via Molecular Dynamics Simulations. Acta Phys. -Chim. Sin., 2016, 32(4): 921-928.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201512251     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I4/921

(1) Qiu, L.; Xu, X. J.; Xiao, H. M. Chin. J. Energy Mater. 2005, 13, 262. [邱玲, 许晓娟, 肖鹤鸣. 含能材料, 2005, 13, 262.]
(2) Zhang, J. Quantum Chemical Studies on the Structures and Properties of Organic Caged Energetic Compounds Including Polynitrocubanes. Ph. D. Dissertation, Nanjing University of Science and Technology, Nanjing, 2003. [张骥. 多硝基立方烷等有机笼状高能化合物结构和性能的量子化学研究[D]. 南京: 南京理工大学, 2003.]
(3) Ji, Y. P.;Wang, B. Z.; Zhang, Z. Z.; Lu, Q.; Zhu, C. H. Chin. J. Energy Mater. 2004, 12, 189. [姬月萍, 王伯周, 张志忠, 刘愆, 朱春华. 含能材料, 2004, 12, 189.]
(4) Eaton, P. E.; Cole, T.W., Jr. J. Am. Chem. Soc. 1964, 86, 3157. doi: 10.1021/ja01069a041
(5) Eaton, P. E.; Cole, T.W., Jr. J. Am. Chem. Soc. 1964, 86, 962. doi: 10.1021/ja01059a072
(6) Lukin, K.; Li, J. C.; Gilardi, R.; Eaton, P. E. Angew. Chem. Int. Edit. 1996, 35, 864. doi: 10.1002/anie.199608641
(7) Lukin, K.; Li, J. C.; Gilardi, R.; Eaton, P. E. Angew. Chem. Int. Edit. 1996, 35, 866. doi: 10.1002/anie.199608661
(8) Lukin, K. A.; Li, J. C.; Eaton, P. E.; Gilardi, R. J. Org. Chem. 1997, 62, 8490. doi: 10.1021/jo971308k
(9) Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Edit. 2000, 39, 401. doi: 10.1002/(SICI)1521-3757(20000117)112: 2<422::AID-ANGE422>3.0.CO;2-2
(10) Richard, R. M.; Ball, D.W. J. Hazard. Mater. 2009, 164, 1595. doi: 10.1016/j.jhazmat.2008.09.078
(11) Richard, R. M.; Ball, D.W. J. Hazard. Mater. 2009, 164, 1552. doi: 10.1016/j.jhazmat.2008.08.057
(12) Peköz, R.; Erkoç, ?. Comput. Mater. Sci. 2009, 46, 849. doi: 10.1016/j.commatsci.2009.04.020
(13) Chi, W. J.; Li, L. L.; Li, B. T.;Wu, H. S. J. Mol. Model. 2013, 19, 571. doi: 10.1007/s00894-012-1582-1
(14) Owens, F. J. J. Mol. Struct. 1999, 460, 137. doi: 10.1016/ S0166-1280(98)00312-1
(15) Chi, W.;Wang, X. Y.; Li, B. T.;Wu, H. S. J. Mol. Model. 2012, 18, 4217. doi: 10.1007/s00894-012-1430-3
(16) Li, J. S. Theor. Chem. Acc. 2009, 122, 101. doi: 10.1007/s00214-008-0489-5
(17) Liu, L. C.; Bai, C.; Sun, H.; Goddard, W. A., III. J. Phys. Chem. A 2011, 115, 4941. doi: 10.1021/jp110435p
(18) Zhan, J. H.;Wu, R. C.; Liu, X. X.; Gao, S. Q.; Xu, G. G. Fuel 2014, 134, 283. doi: 10.1016/j.fuel.2014.06.005
(19) Ghenoweth, K.; van Duin, A. C. T.; Dasgupta, S.; Goddard, W. A., III. J. Phys. Chem. A 2009, 113, 1740. doi: 10.1021/jp8081479
(20) Cheung, S.; Deng, W. Q.; van Duin, A. C. T.; Goddard, W. A., III. J. Phys. Chem. A 2005, 109, 851. doi: 10.1021/jp0460184
(21) Mueller, J. E.; van Duin, A. C. T.; Goddard, W. A., III. J. Phys. Chem. C 2010, 114, 4939. doi: 10.1021/la4006983
(22) Kim, S. Y.; Kumar, N.; Persson, P.; Sofo, J.; van Duin, A. C. T.; Kubicki, J. D. Langmuir 2013, 29, 7838. doi: 10.1021/la4006983
(23) Strachan, A.; Kober, E. M.; van Duin, A. C. T.; Oxgaard, J.; Goddard, W. A. J. Chem. Phys. 2005, 122, 54502. doi: 10.1063/1.1831277
(24) Liu, H.; Dong, X.; He, Y. H. Acta Phys. -Chim. Sin. 2014, 30, 232. [刘海, 董晓, 何远航. 物理化学学报, 2014, 30, 232.] doi: 10.3866/PKU.WHXB201312101
(25) Liu, H.; Li, Q. K.; He, Y. H. Acta Phys. Sin. 2013, 62, 1. [刘海, 李启楷, 何远航. 物理学报, 2013, 62, 1.] doi: 10.7498/aps.62.208202
(26) Zhou, T. T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. doi: 10.1021/jp105805w
(27) http://lammps.sandia.gov/ (accessed Nov 16, 2015).

[1] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[2] WANG Xiu-Xiu, ZHAO Jian-Wei, YU Gang. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[3] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1915-1922.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[5] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[6] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[7] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[8] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[9] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[10] ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[11] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[12] ZHAO Yuan, CAO Ze-Xing. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[13] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[14] ZHENG Dong, ZHONG Bei-Jing, YAO Tong. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445.
[15] BAI Xiao-Fang, CHEN Wei, WANG Bai-Yin, FENG Guang-Hui, WEI Wei, JIAO Zheng, SUN Yu-Han. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403.