Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1674-1680    DOI: 10.3866/PKU.WHXB2016032806
Article     
Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts
GU Yong-Bing1,3, CAI Qiu-Xia1, CHEN Xian-Lang1, ZHUANG Zhen-Zhan1, ZHOU Hu1, ZHUANG Gui-Lin1, ZHONG Xing1, MEI Dong-Hai2, WANG Jian-Guo1
1 College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China;
2 Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland 99352, Washington, USA;
3 Department of Chemistry and Chemical Engineering, Lishui University, Lishui 323000, Zhejiang Province, P. R. China
Download:   PDF(7349KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Au catalysts supported on an oxide show excellent activity in CO oxidation under moderate conditions. Many experiments and theoretical calculations have shown the important role of the interface between Au and the oxide support during CO oxidation. Inverse catalysts provide an alternative way to probe the role of the interface. We used Al2O3/Au(111) as a model inverse catalyst in this study, and used density functional theory to investigate the properties of Al2O3/Au(111), the interface between Al2O3 and Au(111), the adsorption of O2, and CO oxidation over Al2O3/Au(111). Our theoretical calculations show that small Al2O3 clusters are strongly bound on the Au(111) surface as a result of charge transfer. The results for O2 adsorption on different sites indicate that the interfacial site is the most stable one because of simultaneous bonding of O2 with Au and Al atoms. The full catalytic cycles for CO oxidation by O2 by either an association or dissociation pathway were investigated. Oxidation in the association pathway is significantly easier than that in the dissociation one; the participation of CO makes dissociation of the adsorbed O2 easier. This study reveals not only the origin of inverse catalysts for CO oxidation but also the role of the interface in CO oxidation on Au catalysts.



Key wordsInverse catalyst      Au catalyst      CO oxidation      Density functional theory      Interfacial site     
Received: 23 January 2016      Published: 28 March 2016
MSC2000:  O641  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2013CB733501) and National Natural Science Foundation of China (21176221, 21136001, 21101137, 21306169, 91334013).

Corresponding Authors: WANG Jian-Guo     E-mail: jgw@zjut.edu.cn
Cite this article:

GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts. Acta Phys. -Chim. Sin., 2016, 32(7): 1674-1680.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB2016032806     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I7/1674

(1) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl. Catal. B-Environ. 2005, 56, 9. doi: 10.1016/j.apcatb.2004.06.021
(2) Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Science 2009, 324, 1302. doi: 10.1126/science.1170377
(3) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471. doi: 10.1021/cr030710y
(4) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 2, 405. doi: 10.1246/cl.1987.405
(5) Claus, P. Appl. Catal. A-Gen. 2005, 291, 222. doi: 10.1016/j.apcata.2004.12.048
(6) Li, X. K.; Ma, D. D.; Zheng, Y. P.; Zhang, H.; Ding, D.; Chen, M. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2015, 31, 1753. [李晓坤, 马冬冬, 郑燕萍, 张宏, 丁丁, 陈明树, 万惠霖. 物理化学学报, 2015, 31, 1753.] doi: 10.3866/PKU.WHXB201507091
(7) Rombi, E.; Cutrufello, M. G.; Monaci, R.; Cannas, C.; Gazzoli, D.; Onida, B.; Pavani, M.; Ferino, I. J. Mol. Catal. A-Chem. 2015, 404, 83. doi: 10.1016/j.molcata.2015.04.013
(8) Reina, T. R.; Ivanova, S.; Centeno, M. A.; Odriozola, J. A. Catal. Today. 2015, 253, 149. doi: 10.1016/j.cattod.2015.01.041
(9) Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Angew. Chem. Int. Ed. 2010, 49, 1295. doi: 10.1002/anie.200906249
(10) Tian, L.; Zhou, G. B.; Li, Z. H.; Pei, Y.; Qiao, M. H.; Fan, K. N. Acta Phys. -Chim. Sin. 2011, 27, 946. [田莉, 周功兵, 李振华, 裴燕, 乔明华, 范康年. 物理化学学报, 2011, 27, 946.] doi: 10.3866/PKU.WHXB201104034
(11) Hartadi, Y.; Widmann, D.; Behm, R. J. ChemSusChem 2015, 8, 456. doi: 10.1002/cssc.201402645
(12) Campo, B.; Volpe, M.; Ivanova, S.; Touroude, R. J. Catal. 2006, 242, 162. doi: 10.1016/j.jcat.2006.05.031
(13) Bi, J. H.; Zhou, Z. Y.; Chen, M. Y.; Liang, S. J.; He, Y. H.; Zhang, Z. Z.; Wu, L. Appl. Surf. Sci. 2015, 349, 292. doi: 10.1016/j.apsusc201501:21′t
(14) Sobczak, I.; Kozlowska, M.; Ziolek, M. J. Mol. Catal. A -Chem 2014, 390, 114. doi: 10.1016/j.molcata.2014.03.015
(15) Schubert, M. M.; Hackenberg, S.; Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. J. Catal. 2001, 197, 113. doi: 10.1006/jcat.2000.3069
(16) Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. J. Am. Chem. Soc. 2006, 128, 917. doi: 10.1021/ja0561441
(17) Widmann, D.; Liu, Y.; Schüth, F.; Behm, R. J. J. Catal. 2010, 276, 292. doi: 10.1016/j.jcat.2010.09.023
(18) Wang, J.; Hu, Z. H.; Miao, Y. X.; Li, W. C. Gold. Bull. 2013, 47, 95. doi: 10.1007/s13404-013-0128-3
(19) Zou, X. H.; Qi, S. X.; Suo, Z. H.; An, L. D.; Li, F. Catal. Commun. 2007, 8, 784. doi: 10.1016/j.catcom.2006.08.024
(20) Davran-Candan, T.; Tezcanli, S. T.; Yildirim, R. Catal. Commun. 2011, 12, 1149. doi: 10.1007/s11144-011-0370-8
(21) Matthey, D.; Wang, J. G.; Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692. doi: 10.1126/science.1135752
(22) Widmann, D.; Behm, R. J. Acc. Chem. Res. 2014, 47, 740. doi: 10.1021/ar400203e
(23) Menegazzo, F.; Pinna, F.; Signoretto, M.; Trevisan, V.; Boccuzzi, F.; Chiorino, A.; Manzoli, M. Appl. Catal. A-Gen. 2009, 356, 31. doi: 10.1016/j.apcata.2008.12.004
(24) Akita, T.; Maeda, Y.; Kohyama, M. J. Catal. 2015, 324, 127. doi: 10.1016/j.jcat.2015.02.006
(25) Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Science 2011, 333, 736. doi: 10.1126/science.1207272
(26) Wang, J. G.; Hammer, B. Phys. Rev. Lett. 2006, 97, 49. doi: 10.1103/PhysRevLett.97.136107
(27) Liu, Z. P.; Gong, X. Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Phys. Rev. Lett. 2003, 91, 266102. doi: 10.1103/PhysRevLett.91.266102
(28) Cai, Q. X.; Wang, X. D.; Wang, J. G. J. Phys. Chem. C 2013, 117, 21331. doi: 10.1021/jp406557f
(29) Koga, H.; Tada, K.; Okumura, M. Chem. Phys. Lett. 2014, 610-611, 76. doi: 10.1016/j.cplett.2014.06.061
(30) Nasluzov, V. A.; Shulimovich, T. V.; Shor, A. M.; Bukhtiyarov, V. I.; Roesch, N. Phys. Status. Solidi. B 2010, 247, 1023. doi: 10.1016/j.cplett.2010.06.004
(31) Hernández, N. C.; Sanz, J. F. Appl. Surf. Sci. 2004, 238, 228. doi: 10.1016/j.apsusc.2004.05.234
(32) Kim, H. Y.; Henkelman, G. J. Phys. Chem. Lett. 2012, 3, 2194. doi: 10.1021/jz300631f
(33) Kim, H. Y.; Henkelman, G. J. Phys. Chem. Lett. 2013, 4, 216. doi: 10.1021/jz301778b
(34) Han, Y.; Ferrando, R.; Li, Z. Y. J. Phys. Chem. Lett. 2014, 5, 131. doi: 10.1021/jz4022975
(35) Yoon, B.; Hakkinen, H.; Landman, U.; Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403. doi: 10.1126/science.1104168
(36) Rodríguez, J. A.; Hrbek, J. Surf. Sci. 2010, 604, 241. doi: 10.1016/j.susc.2009.11.038
(37) Graciani, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F. J. Phys. Chem. C 2014, 118, 26931. doi: 10.1021/jp509947t
(38) Yang, F.; Graciani, J.; Evans, J.; Liu, P.; Hrbek, J.; Sanz, J. F.; Rodriguez, J. A. J. Am. Chem. Soc. 2011, 133, 3444. doi: 10.1021/ja1087979
(39) Yan, T.; Redman, D.W.; Yu, W. Y.; Flaherty, D.W.; Rodriguez, J. A.; Mullins, C. B. J. Catal. 2012, 294, 216. doi: 10.1016/j.jcat.2012.07.024
(40) Senanayake, S. D.; Stacchiola, D.; Evans, J.; Estrella, M.; Barrio, L.; Pérez, M.; Hrbek, J.; Rodriguez, J. A. J. Catal. 2010, 271, 392. doi: 10.1016/j.jcat.2010.02.024
(41) Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Science 2007, 318, 1757. doi: 10.1126/science.1150038
(42) Senanayake, S. D.; Mudiyanselage, K.; Bruix, A.; Agnoli, S.; Hrbek, J.; Stacchiola, D.; Rodriguez, J. A. J. Phys. Chem. C 2014, 118, 25057. doi: 10.1021/jp507966v
(43) Xu, X. J.; Fu, Q.; Guo, X. G.; Bao, X. H. ACS Catal. 2013, 3, 1810. doi: 10.1021/cs400197t
(44) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
(45) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558
(46) Kresse, G.; Hafner, J. J. Phys. Condes. Matter 1994, 6, 8245. doi: 10.1088/0953-8984/6/40/015
(47) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
(48) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
(49) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672
(50) Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978. doi: 10.1063/1.1323224
(51) Cramer, C. J.; Christopher, J. Essentials of Computational Chemistry: Theories and Models, 2nd ed.; John Wiley: West Sussex, 2005; pp 385-427.
(52) Rahane, A. B.; Deshpande, M. D.; Kumar, V. J. Phys. Chem. C 2011, 115, 18111. doi: 10.1021/jp2050614
(53) Chang, C. M.; Cheng, C.; Wei, C. M. J. Chem. Phys. 2008, 128, 124710. doi: 10.1063/1.2841364

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[7] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[8] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[9] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[11] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[13] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[14] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 548-553.
[15] CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2424-2437.