Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1674-1680    DOI: 10.3866/PKU.WHXB2016032806
ARTICLE     
Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts
Yong-Bing GU1,3,Qiu-Xia CAI1,Xian-Lang CHEN1,Zhen-Zhan ZHUANG1,Hu ZHOU1,Gui-Lin ZHUANG1,Xing ZHONG1,Dong-Hai MEI2,Jian-Guo WANG1,*()
1 College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
2 Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland 99352, Washington, USA
3 Department of Chemistry and Chemical Engineering, Lishui University, Lishui 323000, Zhejiang Province, P. R. China
Download: HTML     PDF(7349KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Au catalysts supported on an oxide show excellent activity in CO oxidation under moderate conditions. Many experiments and theoretical calculations have shown the important role of the interface between Au and the oxide support during CO oxidation. Inverse catalysts provide an alternative way to probe the role of the interface. We used Al2O3/Au(111) as a model inverse catalyst in this study, and used density functional theory to investigate the properties of Al2O3/Au(111), the interface between Al2O3 and Au(111), the adsorption of O2, and CO oxidation over Al2O3/Au(111). Our theoretical calculations show that small Al2O3 clusters are strongly bound on the Au(111) surface as a result of charge transfer. The results for O2 adsorption on different sites indicate that the interfacial site is the most stable one because of simultaneous bonding of O2 with Au and Al atoms. The full catalytic cycles for CO oxidation by O2 by either an association or dissociation pathway were investigated. Oxidation in the association pathway is significantly easier than that in the dissociation one; the participation of CO makes dissociation of the adsorbed O2 easier. This study reveals not only the origin of inverse catalysts for CO oxidation but also the role of the interface in CO oxidation on Au catalysts.



Key wordsInverse catalyst      Au catalyst      CO oxidation      Density functional theory      Interfacial site     
Received: 23 January 2016      Published: 28 March 2016
O641  
Fund:  the National Key Basic Research Program of China (973)(2013CB733501);National Natural Science Foundation of China(21176221);National Natural Science Foundation of China(21136001);National Natural Science Foundation of China(21101137);National Natural Science Foundation of China(21306169);National Natural Science Foundation of China(91334013)
Corresponding Authors: Jian-Guo WANG     E-mail: jgw@zjut.edu.cn
Cite this article:

Yong-Bing GU,Qiu-Xia CAI,Xian-Lang CHEN,Zhen-Zhan ZHUANG,Hu ZHOU,Gui-Lin ZHUANG,Xing ZHONG,Dong-Hai MEI,Jian-Guo WANG. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts. Acta Phys. -Chim. Sin., 2016, 32(7): 1674-1680.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB2016032806     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1674

 
 
 
 
Association schemeDissociation scheme
O2 + * → O2* O2 + * → O2*
CO + * → CO*O2* → 2O*
CO + O2* → COO2*CO + O* → CO2
COO2* → CO2 + O*
CO* + O* → CO2
 
 
1 Gasteiger H. A. ; Kocha S. S. ; Sompalli B. ; Wagner F. T. Appl. Catal. B-Environ. 2005, 56, 9.
2 Lim B. ; Jiang M. J. ; Camargo P. H. C. ; Cho E. C. ; Tao J. ; Lu X. M. ; Zhu Y. M. ; Xia Y. N. Science 2009, 324, 1302.
3 Lersch M. ; Tilset M. Chem. Rev. 2005, 105, 2471.
4 Haruta M. ; Kobayashi T. ; Sano H. ; Yamada N. Chem. Lett. 1987, 2, 405.
5 Claus P. Appl. Catal. A-Gen. 2005, 291, 222.
6 Li X. K. ; Ma D. D. ; Zheng Y. P. ; Zhang H. ; Ding D. ; Chen M. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2015, 31, 1753.
6 李晓坤; 马冬冬; 郑燕萍; 张宏; 丁丁; 陈明树; 万惠霖. 物理化学学报, 2015, 31, 1753.
7 Rombi E. ; Cutrufello M. G. ; Monaci R. ; Cannas C. ; Gazzoli D. ; Onida B. ; Pavani M. ; Ferino I. J. Mol. Catal. A-Chem. 2015, 404, 83.
8 Reina T. R. ; Ivanova S. ; Centeno M. A. ; Odriozola J. A. Catal. Today. 2015, 253, 149.
9 Zhu Y. ; Qian H. F. ; Drake B. A. ; Jin R. C. Angew. Chem. Int. Ed. 2010, 49, 1295.
10 Tian L. ; Zhou G. B. ; Li Z. H. ; Pei Y. ; Qiao M. H. ; Fan K. N. Acta Phys. -Chim. Sin. 2011, 27, 946.
10 田莉; 周功兵; 李振华; 裴燕; 乔明华; 范康年. 物理化学学报, 2011, 27, 946.
11 Hartadi Y. ; Widmann D. ; Behm R. J. ChemSusChem 2015, 8, 456.
12 Campo B. ; Volpe M. ; Ivanova S. ; Touroude R. J. Catal. 2006, 242, 162.
13 Bi J. H. ; Zhou Z. Y. ; Chen M. Y. ; Liang S. J. ; He Y. H. ; Zhang Z. Z. ; Wu L. Appl. Surf. Sci. 2015, 349, 292.
14 Sobczak I. ; Kozlowska M. ; Ziolek M. J. Mol. Catal. A -Chem 2014, 390, 114.
15 Schubert M. M. ; Hackenberg S. ; Veen A. C. ; Muhler M. ; Plzak V. ; Behm R. J. J. Catal. 2001, 197, 113.
16 Comotti M. ; Li W. C. ; Spliethoff B. ; Schuth F. J. Am. Chem. Soc. 2006, 128, 917.
17 Widmann D. ; Liu Y. ; Schüth F. ; Behm R. J. J. Catal. 2010, 276, 292.
18 Wang J. ; Hu Z. H. ; Miao Y. X. ; Li W. C. Gold. Bull. 2013, 47, 95.
19 Zou X. H. ; Qi S. X. ; Suo Z. H. ; An L. D. ; Li F. Catal. Commun. 2007, 8, 784.
20 Davran-Candan T. ; Tezcanli S. T. ; Yildirim R. Catal. Commun. 2011, 12, 1149.
21 Matthey D. ; Wang J. G. ; Wendt S. ; Matthiesen J. ; Schaub R. ; Laegsgaard E. ; Hammer B. ; Besenbacher F. Science 2007, 315, 1692.
22 Widmann D. ; Behm R. J. Acc. Chem. Res. 2014, 47, 740.
23 Menegazzo F. ; Pinna F. ; Signoretto M. ; Trevisan V. ; Boccuzzi F. ; Chiorino A. ; Manzoli M. Appl. Catal. A-Gen. 2009, 356, 31.
24 Akita T. ; Maeda Y. ; Kohyama M. J. Catal. 2015, 324, 127.
25 Green I. X. ; Tang W. J. ; Neurock M. ; Yates J. T. Science 2011, 333, 736.
26 Wang J. G. ; Hammer B. Phys. Rev. Lett. 2006, 97, 49.
27 Liu Z. P. ; Gong X. Q. ; Kohanoff J. ; Sanchez C. ; Hu P. Phys. Rev. Lett. 2003, 91, 266102.
28 Cai Q. X. ; Wang X. D. ; Wang J. G. J. Phys. Chem. C 2013, 117, 21331.
29 Koga H. ; Tada K. ; Okumura M. Chem. Phys. Lett. 2014, 610-611, 76.
30 Nasluzov V. A. ; Shulimovich T. V. ; Shor A. M. ; Bukhtiyarov V. I. ; Roesch N. Phys. Status. Solidi. B 2010, 247, 1023.
31 Hernández N. C. ; Sanz J. F. Appl. Surf. Sci. 2004, 238, 228.
32 Kim H. Y. ; Henkelman G. J. Phys. Chem. Lett. 2012, 3, 2194.
33 Kim H. Y. ; Henkelman G. J. Phys. Chem. Lett. 2013, 4, 216.
34 Han Y. ; Ferrando R. ; Li Z. Y. J. Phys. Chem. Lett. 2014, 5, 131.
35 Yoon B. ; Hakkinen H. ; Landman U. ; Worz A. S. ; Antonietti J. M. ; Abbet S. ; Judai K. ; Heiz U. Science 2005, 307, 403.
36 Rodríguez J. A. ; Hrbek J. Surf. Sci. 2010, 604, 241.
37 Graciani J. ; Vidal A. B. ; Rodriguez J. A. ; Sanz J. F. J. Phys. Chem. C 2014, 118, 26931.
38 Yang F. ; Graciani J. ; Evans J. ; Liu P. ; Hrbek J. ; Sanz J. F. ; Rodriguez J. A. J. Am. Chem. Soc. 2011, 133, 3444.
39 Yan T. ; Redman D.W. ; Yu W. Y. ; Flaherty D.W. ; Rodriguez J. A. ; Mullins C. B. J. Catal. 2012, 294, 216.
40 Senanayake S. D. ; Stacchiola D. ; Evans J. ; Estrella M. ; Barrio L. ; Pérez M. ; Hrbek J. ; Rodriguez J. A. J. Catal. 2010, 271, 392.
41 Rodriguez J. A. ; Ma S. ; Liu P. ; Hrbek J. ; Evans J. ; Perez M. Science 2007, 318, 1757.
42 Senanayake S. D. ; Mudiyanselage K. ; Bruix A. ; Agnoli S. ; Hrbek J. ; Stacchiola D. ; Rodriguez J. A. J. Phys. Chem. C 2014, 118, 25057.
43 Xu X. J. ; Fu Q. ; Guo X. G. ; Bao X. H. ACS Catal. 2013, 3, 1810.
44 Kresse G. ; Furthmuller J. Phys. Rev. B 1996, 54, 11169.
45 Kresse G. ; Hafner J. Phys. Rev. B 1993, 47, 558.
46 Kresse G. ; Hafner J. J. Phys. Condes. Matter 1994, 6, 8245.
47 Perdew J. P. ; Chevary J. A. ; Vosko S. H. ; Jackson K. A. ; Pederson M. R. ; Singh D. J. ; Fiolhais C. Phys. Rev. B 1992, 46, 6671.
48 Perdew J. P. ; Wang Y. Phys. Rev. B 1992, 45, 13244.
49 Henkelman G. ; Uberuaga B. P. ; Jonsson H. J. Chem. Phys. 2000, 113, 9901.
50 Henkelman G. ; Jonsson H. J. Chem. Phys. 2000, 113, 9978.
51 Cramer, C. J.; Christopher, J. Essentials of Computational Chemistry: Theories and Models, 2nd ed.; John Wiley: West Sussex, 2005; pp 385-427.
52 Rahane A. B. ; Deshpande M. D. ; Kumar V. J. Phys. Chem. C 2011, 115, 18111.
53 Chang C. M. ; Cheng C. ; Wei C. M. J. Chem. Phys. 2008, 128, 124710.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[6] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[7] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[8] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[9] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[10] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[11] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[12] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[13] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[14] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[15] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.