Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1556-1592    DOI: 10.3866/PKU.WHXB201604291
REVIEW     
Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production
CHANG Jin-Fa1,2, XIAO Yao1,2, LUO Zhao-Yan1,2, GE Jun-Jie1,2, LIU Chang-Peng2, XING Wei1,2
1 State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, P. R. China;
2 Laboratory of Advanced Power Sources, Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
Download:   PDF(71024KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Because of its zero-carbon emission energy, hydrogen energy is considered the cleanest energy. The greatest challenge is to develop a cost-effective strategy for hydrogen generation. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion are promising pathways for sustainable hydrogen production. All of these techniques require highly active noble metal-free hydrogen and oxygen evolution catalysts to make the water splitting process energy efficient and economical. In this review, we highlight recent research efforts toward synthesis and performance optimization of noble metal-free electrocatalysts in our institute over the last 3 years. We focus on (1) hydrogen evolution catalysts, including transition metal phosphide, sulfides, selenides, and carbides; (2) oxygen evolution catalysts, including transition metal phosphide, sulfide, and oxide/hydroxides; and (3) bifunctional catalysts, mainly comprising transition metal phosphides, selenides, sulfides, and so on. Finally, we summarize the challenges and prospective for future development of non-noble metal catalysts for water electrolysis.



Key wordsWater electrolysis      Hydrogen energy      Non-noble catalyst      Hydrogen evolution reaction      Oxygen evolution reaction     
Received: 21 March 2016      Published: 29 April 2016
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21373199, 21433003), Strategic Priority Research Program of Chinese Academy of Sciences (XDA09030104), Jilin Provincial Science and Technology Development Program, China (20130206068GX, 20140203012SF, 20160622037JC), and Recruitment Program of Foreign Experts, China (WQ20122200077).

Corresponding Authors: XING Wei, LIU Chang-Peng     E-mail: xingwei@ciac.ac.cn;liuchp@ciac.ac.cn
Cite this article:

CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production. Acta Phys. -Chim. Sin., 2016, 32(7): 1556-1592.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201604291     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I7/1556

(1) Wang, M.; Wang, Z.; Gong, X.; Guo, Z. Renew. Sust. Energy Rev. 2014, 29, 573. doi: 10.1016/S1364-0321(99)00011-8
(2) Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/c4cs00448e
(3) Trancik, J. E. Nature 2014, 507 (7492), 300. doi: 10.1038/507300a
(4) Mallouk, T. E. Nat. Chem. 2013, 5 (5), 362. doi: 10.1038/nchem.1634
(5) Kreuter, W.; Hofmann, H. Int. J. Hydrog. Energy 1998, 23, 661. doi: 10.1016/S0360-3199(97)00109-2
(6) Leroy, R. Int. J. Hydrog. Energy 1983, 8, 401. doi: 10.1016/0360-3199(83)90162-3
(7) Lu, P.W. T.; Srinivasan, S. J. Appl. Electrochem. 1979, 9, 269. doi: 10.1007/BF01112480
(8) Spacil, H. S.; Tedmon, C. S. J. Electrochem. Soc. 1969, 116, 1618. doi: 10.1149/1.2411642
(9) Zeng, K.; Zhang, D. Prog. Energ. Combust. Sci. 2010, 36, 307. doi: 10.1016/j.pecs.2009.11.002
(10) Bockris, J. O. M.; Potter, E. C. J. Electrochem. Soc. 1952, 99, 169. doi: 10.1149/1.2779692
(11) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152 (3), J23. doi: 10.1149/1.1856988
(12) Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Science 2014, 345 (6204), 1593. doi: 10.1126/science.1258307
(13) Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y. K. Catal. Today 2009, 143 (1-2), 94. doi: 10.1016/j.cattod.2008.09.019
(14) Liu, P.; Rodriguez, J. A. J. Am. Chem. Soc. 2005, 127, 14871. doi: 10.1021/ja0540019
(15) Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135 (25), 9267. doi: 10.1021/ja403440e
(16) Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Phys. Chem. Chem. Phys. 2014, 16 (13), 5917. doi: 10.1039/c4cp00482e
(17) Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. Nanoscale 2014, 16 (13), 5917. doi: 10.1039/c4cp00482e
(18) Jiang, P.; Liu, Q.; Sun, X. Nanoscale 2014, 6 (22), 13440. doi: 10.1039/c4nr04866k
(19) Zhang, W. G.; Shang, Y. P.; Liu, L. N.; Yao, S.W.; Wang, H. Z. Acta Phys. -Chim. Sin. 2011, 27 (4), 900. [张卫国, 尚云鹏, 刘丽娜, 姚素薇, 王宏智. 物理化学学报, 2011, 27 (4), 900.] doi: 10.3866/PKU.WHXB20110344
(20) Duan, Q. H.; Wang, S. L.; Wang, L. P. Acta Phys. -Chim. Sin. 2013, 29 (1), 123. [段钱花, 王森林, 王丽品. 物理化学学报, 2013, 29 (1), 123.] doi: 10.3866/PKU.WHXB201210095
(21) Tang, C.; Asiri, A. M.; Luo, Y.; Sun, X. ChemNanoMat 2015, 1 (8), 558. doi: 10.1002/cnma.201500163
(22) Popczun, E. J.; Read, C. G.; Roske, C.W.; Lewis, N. S.; Schaak, R. E. Angew. Chem. Int. Edit. 2014, 126 (21), 5531. doi: 10.1002/ange.201402646
(23) Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (26), 6710. doi: 10.1002/anie.201404161
(24) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136 (21), 7587. doi: 10.1021/ja503372r
(25) Li, Q.; Xing, Z.; Asiri, A. M.; Jiang, P.; Sun, X. Int. J. Hydrog. Energy 2014, 39 (30), 16806. doi: 10.1016/j.ijhydene.2014.08.099
(26) Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Chem. Mater. 2014, 26 (15), 4326. doi: 10.1021/cm501273s
(27) Gu, S.; Du, H.; Asiri, A. M.; Sun, X.; Li, C. M. Phys. Chem. Chem. Phys. 2014, 16 (32), 16909. doi: 10.1039/c4cp02613f
(28) Jiang, P.; Liu, Q.; Ge, C.; Cui, W.; Pu, Z.; Asiri, A. M.; Sun, X. J. Mater. Chem. A 2014, 2 (35), 14634. doi: 10.1039/c4ta03261f
(29) Du, H.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.; Li, C. M. J. Mater. Chem. A 2014, 2 (36), 14812. doi: 10.1039/c4ta02368d
(30) Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Humphrey, M. G.; Zhang, C. Nano Energy 2014, 9, 373. doi: 10.1016/j.nanoen.2014.08.013
(31) Lu, A.; Chen, Y.; Li, H.; Dowd, A.; Cortie, M. B.; Xie, Q.; Guo, H.; Qi, Q.; Peng, D. L. Int. J. Hydrog. Energy 2014, 39 (33), 18919. doi: 10.1016/j.ijhydene.2014.09.104
(32) Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. J. Phys. Chem. C 2014, 118 (50), 29294. doi: 10.1021/jp5054452
(33) Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Chem. Commun. 2013, 49 (59), 6656. doi: 10.1039/c3cc43107j
(34) Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. ACS Nano 2014, 8, 11101. doi: 10.1021/nn5048553
(35) Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (47), 12855. doi: 10.1002/anie.201406848
(36) Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; Luo, Y. ACS Catal. 2014, 4 (11), 4065. doi: 10.1021/cs501106g
(37) Tian, J.; Liu, Q.; Liang, Y.; Xing, Z.; Asiri, A. M.; Sun, X. ACS Appl. Mater. Interfaces 2014, 6 (23), 20579. doi: 10.1021/am5064684
(38) Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (36), 9577. doi: 10.1002/anie.201403842
(39) Morales-Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43 (18), 6555. doi: 10.1039/c3cs60468c
(40) Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Energy Environ. Sci. 2014, 7 (8), 2624. doi: 10.1039/c4ee00957f
(41) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Adv. Mater. 2014, 26 (32), 5702. doi: 10.1002/adma.201401692
(42) Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Alamry, K. A.; Sun, X. Appl. Catal. B: Environ. 2015, 164, 144. doi: 10.1016/j.apcatb.2014.09.016
(43) Kibsgaard, J.; Jaramillo, T. F. Angew. Chem. Int. Edit. 2014, 53 (52), 14433. doi: 10.1002/anie.201408222
(44) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Chem. Mater. 2014, 26 (16), 4826. doi: 10.1021/cm502035s
(45) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E. Chem. Commun. 2014, 50 (75), 11026. doi: 10.1039/c4cc04709e
(46) Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. ACS Appl. Mater. Interfaces 2014, 6 (24), 21874. doi: 10.1021/am5060178
(47) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. ACS Catal. 2015, 5 (1), 145. doi: 10.1021/cs5014943
(48) Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Angew. Chem. Int. Edit. 2012, 51 (25), 6131. doi: 10.1002/anie.201200699
(49) Shi, J.; Pu, Z.; Liu, Q.; Asiri, A. M.; Hu, J.; Sun, X. Electrochim. Acta 2015, 154, 345. doi: 10.1016/j.electacta.2014.12.096
(50) Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Electrochim. Acta 2016, 191, 841. doi: 10.1016/j.electacta.2015.12.174
(51) Levy, R. B.; Boudart, M. Science 1973, 181, 547. doi: 10.1126/science.181.4099.547
(52) Bennett, L. H.; Cuthill, J. R.; Mcalister, A. J.; Erickson, N. E. Science 1974, 184, 563. doi: 10.1126/science.184.4136.563
(53) Vrubel, H.; Hu, X. Angew. Chem. Int. Edit. 2012, 51 (51), 12703. doi: 10.1002/ange.201207111
(54) Wan, C.; Regmi, Y. N.; Leonard, B. M. Angew. Chem. Int. Edit. 2014, 53 (25), 6407. doi: 10.1002/ange.201402998
(55) Chen, W. F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C. H.; Zhu, Y.; Muckerman, J. T.; Fujita, E. Energy. Environ. Sci. 2013, 6 (6), 1818. doi: 10.1039/c3ee40596f
(56) Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X. ACS Catal. 2014, 4 (8), 2658. doi: 10.1021/cs5005294
(57) Ge, C.; Jiang, P.; Cui, W.; Pu, Z.; Xing, Z.; Asiri, A. M.; Obaid, A. Y.; Sun, X.; Tian, J. Electrochim. Acta 2014, 134, 182. doi: 10.1016/j.electacta.2014.04.113
(58) Sheng, J. F.; Ma, C. A.; Zhang, C.; Li, G. H. Acta Phys. -Chim. Sin. 2007, 23 (2), 181. [盛江峰, 马淳安, 张诚, 李国华.物理化学学报, 2007, 23 (2), 181.] doi: 10.3866/PKU.WHXB20070209
(59) Xiao, X. F.; Liu, R. F.; Zhu, Z. S. Acta Phys. -Chim. Sin. 1999, 15 (8), 742. [肖秀峰, 刘榕芳, 朱则善. 物理化学学报, 1999, 15 (8), 742.] doi: 10.3866/PKU.WHXB19990814
(60) Wirth, S.; Harnisch, F.; Weinmann, M.; Schröder, U. Appl. Catal. B: Environ. 2012, 126, 225. doi: 10.1016/j.apcatb.2012.07.023
(61) Yan, Y.; Xia, B.; Xu, Z.; Wang, X. ACS Catal. 2014, 4 (6), 1693. doi: 10.1021/cs500070x
(62) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308. doi: 10.1021/ja0504690
(63) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. doi: 10.1126/science.1141483
(64) Pu, Z.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X.; He, Y. Electrochim. Acta 2015, 168, 133. doi: 10.1016/j.electacta.2015.04.011
(65) Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Nat. Mater. 2016, 15 (2), 197. doi: 10.1038/NMAT4481
(66) Cui, W.; Ge, C.; Xing, Z.; Asiri, A. M.; Sun, X. Electrochim. Acta 2014, 137, 504. doi: 10.1016/j.electacta.2014.06.035
(67) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat. Mater. 2013, 12 (9), 850. doi: 10.1038/NMAT3700
(68) Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Angew. Chem. Int. Edit. 2013, 52 (51), 13751. doi: 10.1002/anie.201307475
(69) Pu, Z.; Liu, Q.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Electrochim. Acta 2014, 134, 8. doi: 10.1016/j.electacta.2014.04.092
(70) Cao, Y. L.; Wang, F.; Liu, J. J.; Wang, J. J.; Zhang, L. H.; Tan, S. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 1979. [曹寅亮, 王峰, 刘景军, 王建军, 张良虎, 覃事永. 物理化学学报, 2009, 25 (10), 1979.] doi: 10.3866/PKU.WHXB20091017
(71) Di Giovanni, C.; Wang, W. A.; Nowak, S.; Grenèche, J. M.; Lecoq, H.; Mouton, L.; Giraud, M.; Tard, C. ACS Catal. 2014, 4 (2), 681. doi: 10.1021/cs4011698
(72) Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. Energy Environ. Sci. 2013, 6 (12), 3553. doi: 10.1039/c3ee42413h
(73) Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Electrochim. Acta 2015, 153, 508. doi: 10.1016/j.electacta.2014.12.043
(74) Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X. Int. J. Hydrog. Energy 2015, 40 (14), 4727. doi: 10.1016/j.ijhydene.2015.02.038
(75) Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. J. Phys. Chem. C 2014, 118 (37), 21347. doi: 10.1021/jp5054452
(76) Gao, M. R.; Lin, Z. Y.; Zhuang, T. T.; Jiang, J.; Xu, Y. F.; Zheng, Y. R.; Yu, S. H. J. Mater. Chem. 2012, 22 (27), 13662. doi: 10.1039/C2JM31916K
(77) Liu, Q.; Shi, J.; Hu, J.; Asiri, A. M.; Luo, Y.; Sun, X. ACS Appl. Mater. Interfaces 2015, 7 (7), 3877. doi: 10.1021/am509185x
(78) Liu, T.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X. Chem. Commun. 2015, 51 (93), 16683. doi: 10.1039/c5cc06892d
(79) Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. Angew. Chem. Int. Edit. 2015, 127 (32), 9483. doi: 10.1002/anie.201503407
(80) Liu, T.; Asiri, A. M.; Sun, X. Nanoscale 2016, 8 (7), 3911. doi: 10.1039/c5nr07170d
(81) Damjanovic, A.; Dey, A.; Bockris, J. O. M. J. Electrochem. Soc. 1966, 113 (7), 739. doi: 10.1149/1.2424104
(82) Miles, M. H.; Thomason, M. A. J. Electrochem. Soc. 1976, 123 (10), 1459. doi: 10.1149/1.2132820
(83) Lodi, G.; Sivieri, E.; Battisti, A.; Trasatti, S. J. Appl. Electrochem. 1978, 8 (2), 135. doi: 10.1007/BF00617671
(84) Song, S.; Zhang, H.; Ma, X.; Shao, Z.; Baker, R. T.; Yi, B. Int. J. Hydrog. Energy 2008, 33 (19), 4955. doi: 10.1016/j.ijhydene.2008.06.039
(85) Slavcheva, E.; Radev, I.; Bliznakov, S.; Topalov, G.; Andreev, P.; Budevski, E. Electrochim. Acta 2007, 52 (12), 3889. doi: 10.1016/j.electacta.2006.11.005
(86) Hackwood, S.; Schiavone, L. M.; Dautremont-Smith, W. C.; Beni, G. J. Electrochem. Soc. 1981, 128 (12), 2569. doi: 10.1149/1.2127293
(87) Ardizzone, S.; Carugati, A.; Trasatti, S. J. Electroanal. Chem. 1981, 126 (1), 287. doi: 10.1016/S0022-0728(81)80437-8
(88) Kötz, R.; Neff, H.; Stucki, S. J. Electrochem. Soc. 1984, 131 (1), 72. doi: 10.1149/1.2115548
(89) Kötz, R.; Stucki, S. Electrochim. Acta 1986, 31 (10), 1311. doi: 10.1016/0013-4686(86)80153-0
(90) Kötz, R.; Stucki, S. J. Electrochem. Soc. 1985, 132 (1), 103. doi: 10.1149/1.2113735
(91) Cheng, J.; Zhang, H.; Chen, G.; Zhang, Y. Electrochim. Acta 2009, 54 (26), 6250. doi: 10.1016/j.electacta.2009.05.090
(92) Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Electrochim. Acta 2006, 51 (15), 3161. doi: 10.1016/j.electacta.2005.09.004
(93) Xu, J.; Liu, G.; Li, J.; Wang, X. Electrochim. Acta 2012, 59, 105. doi: 10.1016/j.electacta.2011.10.044
(94) Hutchings, R.; Müller, K.; Kötz, R.; Stucki, S. J. Mater. Sci. 1984, 19 (12), 3987. doi: 10.1007/BF00980762
(95) Yeo, R. S.; Orehotsky, J.; Visscher, W.; Srinivasan, S. J. Electrochem. Soc. 1981, 128 (9), 1900. doi: 10.1149/1.2127761
(96) Corona-Guinto, J. L.; Cardeño-García, L.; Martínez-Casillas, D. C.; Sandoval-Pineda, J. M.; Tamayo-Meza, P.; Silva-Casarin, R.; González-Huerta, R. G. Int. J. Hydrog. Energy 2013, 38 (28), 12667. doi: 10.1016/j.ijhydene.2012.12.071
(97) Ardizzone, S.; Bianchi, C. L.; Cappelletti, G.; Ionita, M.; Minguzzi, A.; Rondinini, S.; Vertova, A. J. Electroanal. Chem. 2006, 589 (1), 160. doi: 10.1016/j.jelechem.2006.02.004
(98) Kadakia, K.; Datta, M. K.; Velikokhatnyi, O. I.; Jampani, P.; Park, S. K.; Saha, P.; Poston, J. A.; Manivannan, A.; Kumta, P. N. Int. J. Hydrog. Energy 2012, 37 (4), 3001. doi: 10.1016/j.ijhydene.2011.11.055
(99) Datta, M. K.; Kadakia, K.; Velikokhatnyi, O. I.; Jampani, P. H.; Chung, S. J.; Poston, J. A.; Manivannan, A.; Kumta, P. N. J. Mater. Chem. A 2013, 1 (12), 4026. doi: 10.1039/c3ta01458d
(100) Zhao, C.; E, Y.; Fan, L. Microchimica Acta 2012, 178 (1), 107. doi: 10.1007/s00604-012-0818-1
(101) Zhao, C.; Yu, H.; Li, Y.; Li, X.; Ding, L.; Fan, L. J. Electroanal. Chem. 2013, 688, 269. doi: 10.1016/j.jelechem.2012.08.032
(102) Miles, M. H.; Huang, Y. H. J. Electrochem. Soc. 1978, 125, 1931. doi: 10.1149/1.2131330
(103) Damjanovic, A.; Dey, A.; Bockris, J. O. M. J. Electrochem. Soc. 1966, 113, 739. doi: 10.1149/1.2424104
(104) Miles, M. H.; Kissel, G.; Lu, P.W. T.; Srinivasan, S. J. Electrochem. Soc. 1976, 123, 332. doi: 10.1149/1.2132820
(105) Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. J. Appl. Electrochem. 2014, 44 (11), 1165. doi: 10.1007/s10800-014-0743-6
(106) Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; He, Y. Int. J. Hydrog. Energy 2015, 40 (39), 13258. doi: 10.1016/j.ijhydene.2015.07.165
(107) Liu, T.; Liang, Y.; Liu, Q.; Sun, X.; He, Y.; Asiri, A. M. Electrochem. Commun. 2015, 60, 92. doi: 10.1016/j.elecom.2015.08.011
(108) Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11 (6), 550. doi: 10.1038/NMAT3313
(109) Liu, Q.; Asiri, A. M.; Sun, X. Electrochem. Commun. 2014, 49, 21. doi: 10.1016/j.elecom.2014.09.021
(110) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874. doi: 10.1021/acscatal.5b02076
(111) Xiao, Y.; Feng, L.; Hu, C.; Fateev, V.; Liu, C.; Xing, W. RSC Adv. 2015, 5 (76), 61900. doi: 10.1039/c5ra08848h
(112) Cheng, N.; Xue, Y.; Liu, Q.; Tian, J.; Zhang, L.; Asiri, A. M.; Sun, X. Electrochim. Acta 2015, 163, 102. doi: 10.1016/j.electacta.2015.02.099
(113) Bao, J. Z.; Wang, S. L. Acta Phys. -Chim. Sin. 2011, 27 (12), 2849. [鲍晋珍, 王森林. 物理化学学报, 2011, 27 (12), 2849.] doi: 10.3866/PKU.WHXB20112849
(114) Wang, S. L.; Wang, L. P.; Zhang, Z. H. Acta Phys. -Chim. Sin. 2013, 29 (5), 981. [王森林, 王丽品, 张振洪. 物理化学学报, 2013, 29 (5), 981.] doi: 10.3866/PKU.WHXB201303071
(115) Tian, J.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X. ChemSusChem 2014, 7 (8), 2125. doi: 10.1002/cssc.201402118
(116) Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. J. Am. Chem. Soc. 2015, 137 (7), 2688. doi: 10.1021/ja5127165
(117) Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V. Nat. Mater. 2012, 11 (9), 802. doi: 10.1038/NMAT3313
(118) He, C.; Wu, X.; He, Z. J. Phys. Chem. C 2014, 118 (9), 4578. doi: 10.1021/jp408153b
(119) Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Adv. Mater. 2015, 27 (20), 3175. doi: 10.1002/adma.201500894
(120) Tian, J.; Cheng, N.; Liu, Q.; Sun, X.; He, Y.; Asiri, A. M. J. Mater. Chem. A 2015, 3 (40), 20056. doi: 10.1039/C5TA04723D
(121) Ma, J.; Jiang, X.; Jiang, L. C. Acta Phys. -Chim. Sin. 1996, 12 (1), 22. [马洁, 蒋雄, 江琳才. 物理化学学报, 1996, 12 (1), 22.] doi: 10.3866/PKU.WHXB19960106
(122) Wang, S. L.; Zhang, Y. Acta Phys. -Chim. Sin. 2011, 27 (6), 1417. [王森林, 张艺. 物理化学学报, 2011, 27 (6), 1417.] doi: 10.3866/PKU.WHXB20110510
(123) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135 (23), 8452. doi: 10.1021/ja4027715
(124) Song, F.; Hu, X. Nat. Commun. 2014, 5, 4477. doi: 10.1038/ncomms5477
(125) Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Nano Lett. 2015, 15 (2), 1421. doi: 10.1021/nl504872s
(126) Liang, H.; Li, L.; Meng, F.; Dang, L.; Zhuo, J.; Forticaux, A.; Wang, Z.; Jin, S. Chem. Mater. 2015, 27 (16), 5702. doi: 10.1021/acs.chemmater.5b02177
(127) Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136 (47), 16481. doi: 10.1021/ja5096733
(128) Fan, G.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43 (20), 7040. doi: 10.1039/c4cs00160e
(129) Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8 (8), 2347. doi: 10.1039/c5ee01155h
(130) Liu, X.; Zheng, H.; Sun, Z.; Han, A.; Du, P. ACS Catal. 2015, 5 (3), 1530. doi: 10.1021/cs501480s
(131) Jiang, N.; You, B.; Sheng, M.; Sun, Y. Angew. Chem. Int. Edit. 2015, 54 (21), 6251. doi: 10. 1002/anie.201501616
(132) Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. Angew. Chem. Int. Edit. 2015, 127 (42), 12538. doi: 10.1002/anie.201502438
(133) Chang, J.; Liang, L.; Li, C.; Wang, M.; Ge, J.; Liu, C.; Xing, W. Green Chem. 2016, 18, 2287. doi: 1 0.1039/c5gc 02899j.
(134) Shi, J.; Hu, J.; Luo, Y.; Sun, X.; Asiri, A. M. Catal. Sci. Technol. 2015, 5 (11), 4954. doi: 10.1039/c5cy01121c
(135) Fang, W.; Liu, D.; Lu, Q.; Sun, X.; Asiri, A. M. Electrochem. Commun. 2016, 63, 60. doi: 10.1016/j.elecom.2015.10.010
(136) Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. Nanoscale 2015, 7, 15122. doi: 10.1039/c5nr04064g
(137) McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977. doi: 10.1021/ja407115p
(138) McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137 (13), 4347. doi: 10.1021/ja510442p

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[2] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 993-1000.
[3] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[4] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[5] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[6] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 149-164.
[7] WU Yu, LUO Jian. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2745-2752.
[8] CAO Yin-Liang, LI Zhi-Lin, WANG Feng, LIU Jing-Jun, JI Jing, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1479-1486.
[9] LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng. Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1313-1318.
[10] WANG Sen-Lin, WANG Li-Pin, ZHANG Zhen-Hong. Preparation and Oxygen Evolution Reaction Performance of Ni/NiCo2O4 Electrode[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 981-988.
[11] DUAN Qian-Hua, WANG Sen-Lin, WANG Li-Pin. Electro-Deposition of the Porous Composite Ni-P/LaNi5 Electrode and Its Electro-Catalytic Performance toward Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 123-130.
[12] WANG Sen-Lin, ZHANG Yi. Preparation and Electrocatalytic Performance of Ni-Mo/LaNi5 Porous Composite Electrode toward Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2011, 27(06): 1417-1423.
[13] ZHANG Wei-Guo, SHANG Yun-Peng, LIU Li-Na, YAO Su-Wei, WANG Hong-Zhi. Electrochemical Preparation of a Ni-W-P Nanowire Array and Its Photoelectrocatalytic Activity for the Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 900-904.
[14] SONG Li-Jun, MENG Hui-Min. Electrodeposition of Nanocrystalline Nickel Alloys and Their Hydrogen Evolution in Seawater[J]. Acta Phys. -Chim. Sin., 2010, 26(09): 2375-2380.
[15] CAO Yin-Liang, WANG Feng, LIU Jing-Jun, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation and Electrocatalytic Mechanisms of Ni-S Active Cathode for Hydrogen Evolution[J]. Acta Phys. -Chim. Sin., 2009, 25(10): 1979-1984.