Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (4): 836-844    DOI: 10.3866/PKU.WHXB201612153
ARTICLE     
Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface
Hong-Lai LIU,Wan-Luo WANG,Shou-Hong XU*(),Hong-Lai LIU
Download: HTML     PDF(1807KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Azobenzene-containing glycolipid, Gal-azo-Cn, was synthesized and its photoisomerization behavior within the liquid-gas interfaces was investigated by Langmuir Blodgett (LB) filmmeasurements and atomic force microscopy. The results showed that Gal-azo-Cn could undergo trans-cis and cis-trans isomerization in both pure glycolipid and phospholipid-mixed films. UV-light induced isomerization increased the surface pressure. However, the membrane pressure within the liquid-gas interface could hinder the trans-cis isomerization. The high membrane pressure prevented the increase of surface pressure, weakening the trans-cis isomerization. In contrast, the cis-trans isomerization sped up in the dark. Compared with the isomerization behavior of pure glycolipid, the interaction between phospholipid and glycolipid could promote the trans-cis isomerization within the liquid-gas interface. In themixed system, the increase in phospholipid containing unsaturated carbon chains increased the fluidity of the membrane but decreased its stability, which weaken the promotion effect of isomerization.



Key wordsLB technology      Azobenzene-containing glycolipid      Photoisomerization      Monomolecular film     
Received: 24 October 2016      Published: 15 December 2016
O647  
Fund:  the National Natural Science Foundation of China(21276074);the National Natural Science Foundation of China(91334203);Fundamental Research Funds for the Central Universities, China
Corresponding Authors: Shou-Hong XU     E-mail: xushouhong@ecust.edu.cn
Cite this article:

Hong-Lai LIU,Wan-Luo WANG,Shou-Hong XU,Hong-Lai LIU. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface. Acta Phys. -Chim. Sin., 2017, 33(4): 836-844.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612153     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I4/836

Fig示意图1 Schematic diagram for the photo-induced isomerization
Fig示意图2 Schematic diagram for the structure of Gal-azo-Cn (a) chemical structure of Gal-azo-C7; (b) chemical structure of Gal-azo-C10; (c) three-dimensional chemical structure of trans Gal-azo-C7; (d) three-dimensional chemical structure of cis Gal-azo-C7
Fig 1 π-A isotherm (a) and compressibility curve (b) of Gal-azo-C7 and Gal-azo-C10 under different light situations
Fig 2 π-t isotherm of Gal-azo-C7 (a) and Gal-azo-C10 (b) with the irradiation of UV-light under different pressures
Presupposed pressure/(mN?m-1) Increased pressure (?π10)/(mN?m-1) Decreased pressure (?π20)/(mN?m-1)
under UV light in dark
35 7.51 12.61
32.5 7.16 12.26
30 9.75 11.4
25 12.09 13.2
20 12.85 9.58
Table 1 Change of surface pressure caused by the isomerization of Gal-azo-C10 at fixed membrane area
Fig 3 π-A isotherm (a) and compressibility curve (b) of mixed lipids containing different percentage of Gal-azo-C10
Fig 4 π-t isotherm of mixed lipids containing 20% Gal-azo-C10 under different pressures The membrane was exposed to UV light for 5 min after stabilized at different presupposed pressure and then remained in dark (solid line) or irradiated with blue light (dotted line) for about 10 min.
Presupposed pressure/(mN?m-1) Increased pressure (?π1)/(mN?m-1) Decreased pressure (?π2)/(mN?m-1) Decreased pressure (?π3)/(mN?m-1)
under uv light in dark under visible light
32.5 5.23 5.88 13.32
30 6.69 5.38 13.66
20 8.97 3.86 15.39
Table 2 Change of surface pressure caused by the isomerization of mixed lipids containing 20% Gal-azo-C10 at fixed membrane area
n(HSPC) n(DOPC) n(Chol)
Lipid1 2 1 3
Lipid2 1 2 3
Lipid3 0 3 3
Table 3 Molar composition of mixed lipid membrane
Fig 5 π-A isotherm (a) and compressibility curves (b) of mixed lipids containing 20% Gal-azo-C10 with different DOPC fractions
The mole ratio of
HSPC : DOPC : Chol
The molecular area of per molecule at 32 mN?m-1 of mixed lipids/nm2
0% Gal-azo-C10 20% Gal-azo-C10 (theoretical) 20% Gal-azo-C10 (practical) 100% Gal-azo-C10
3:0:3 0.3882 0.3735 0.3302 0.3149
2:1:3 0.4146 0.3947 0.4047 0.3149
Table 4 Single molecule area of mixed lipids at 32 mN?m-1
Fig 6 π-t isotherm of 20% Gal-azo-C10-containing mixed lipid with different DOPC fractions under different membrane pressures
Presupposed pressure/(mN?m-1) ?π1/?π10 ?π2/?π20
20 0.698 0.245
30 0.553 0.408
32.5 0.73 0.403
Table 5 Comparison of surface pressure change caused by the isomerization of Gal-azo-C10 in both pure glycolipid and mixed lipid at fixed membrane area
Fig 7 Morphology and height map of cross section of 20% Gal-azo-C10-containing mixed lipid under 30 mN?m-1 with the irradiation of UV light The morphology when the vertical height was 0-0.7 nm: sample standing in dark for 0 min (a), 5 min (b), 10 min (c-1) and 15 min (d-1) after UV irradiation; the morphology when the vertical height was 0-3 nm: sample standing in dark for 10 min (c-2) and 15 min (d-2) after UV irradiation; the change in cross section height between standing in dark for 0 min and 15 min after UV irradiation.
1 Randles E. G. ; Bergethon P. R. Langmuir 2013, 29, 1490.
2 Bayer A. M. ; Alam S. ; Mattern-Schain S. I. ; Best M. D. Chem.-Eur. J. 2014, 20, 3350.
3 Chiang Y. T. ; Cheng Y. T. ; Lu C. Y. ; Yen Y.W. ; Yu L. Y. ; Yu K. S. ; Lyu S. Y. ; Yang C. Y. ; Lo C. L. Chem. Mater. 2013, 25, 4364.
4 Paliwal S. R. ; Paliwal R. ; Pal H. C. ; Saxena A. K. ; Sharma P.R. ; Gupta P. N. ; Agrawal G. P. ; Vyas S. P. Mol. Pharm. 2012, 9, 176.
5 Yang Y. ; Yang Y. ; Xie X. ; Cai X. ; Zhang H. ; Gong W. ; Wang Z. ; Mei X. Biomaterials 2014, 35, 4368.
6 Chen K. J. ; Chaung E. Y. ; Wey S. P. ; Lin K. J. ; Cheng F. ; Lin C. C. ; Liu H. L. ; Tseng H.W. ; Liu C. P. ; Wei M. C. ; Liu C.M. ; Sung H. W. ACS Nano 2014, 8, 5105.
7 Kamiya Y. ; Takagi T. ; Ooi H. ; Ito H. ; Liang X. ; Asanuma H. ACS Synth. Biol. 2015, 4, 365.
8 Bürgi H. B. ; Dunitz J. D. Helv. Chim. Acta 1971, 54, 1255.
9 Einaga Y. ; Yamamoto T. ; Sugai T. ; Sato O. Chem. Mater. 2002, 14, 4846.
10 Lu J. ; Choi E. ; Tamanoi F. ; Zink J. I. Small 2008, 4, 421.
11 Wang Y. ; Li B. ; Zhang L. ; Song H. ; Zhang L. ACS Appl. Mater. Interfaces 2013, 5, 11.
12 Yuan Q. ; Zhang Y. ; Chen T. ; Lu D. ; Zhao Z. ; Zhang X. ; Li Z. ; Yan C. H. ; Tan W. ACS Nano 2012, 6, 6337.
13 Liu X. M. ; Yang B. ; Wang Y. L. ; Wang J. Y. Chem. Mater. 2005, 17, 2792.
14 Liu X. M. ; Yang B. ; Wang Y. L. ; Wang J. Y. Biochim. Biophys. Acta 2005, 1720, 28.
15 Li J. ; Yu Z. ; Jiang H. ; Zou G. ; Zhang Q. Mater. Chem. Phys. 2012, 136, 219.
16 Dai Y. Q. ; Qin G. ; Geng S. Y. ; Yang B. ; Xu Q. ; Wang J. Y. RSC Adv. 2012, 2, 3340.
17 Yang B. ; Geng S. Y. ; Liu X. M. ; Wang J. T. ; Chen Y. K. ; Wang Y. L. ; Wang J. Y. Soft Matter 2012, 8, 518.
18 Xu Q. ; Geng S. ; Dai Y. ; Qin G. ; Wang J. Y. J. Photochem. Photobiol. B: Biol. 2013, 129, 78.
19 Aleandri S. ; Speziale C. ; Mezzenga R. ; Landau E. M. Langmuir 2015, 31, 6981.
20 Truzzolillo D. ; Bordi F. ; Cametti C. ; Sennato S. Colloids Surf. Physicochem. Eng. Aspects 2008, 319, 51.
21 Mi?ones J. ; J r. ; Pais S. ; Mi?ones J. ; Conde O. ; Dynarowicz??tka P. Biophys. Chem. 2009, 140, 69.
22 Liu D. ; Wang S. ; Xu S. ; Liu H. Langmuir 2016.
23 He X. P. ; Xu X. ; Zhang H. L. ; Chen G. R. ; Xu S. ; Liu H. Carbohydr. Res. 2011, 346, 1320.
24 Yu Z.W. ; Jin J. ; Cao Y. Langmuir 2002, 18, 4530.
25 Zhang G. ; Marie P. ; Maaloum M. ; Muller P. ; Benoit N. ; Krafft M. P. J. Am. Chem. Soc. 2005, 127, 10412.
26 Sarkar R. ; Pal P. ; Mahato M. ; Kamilya T. ; Chaudhuri A. ; Talapatra G. B. Colloids Surf. B. Biointerfaces 2010, 79, 384.
27 Zhang Y. ; Cheng X. ; Wang J. ; Zhou F. Colloids Surf. Physicochem. Eng. Aspects 2009, 337, 26.
28 Cui Z. K. ; Phoeung T. ; Rousseau P. A. ; Rydzek G. ; Zhang Q. ; Bazuin C. G. ; Lafleur M. Langmuir 2014, 30, 10818.
29 Dave, N.; Liu, J. Liposomes for DNA Nanotechnology:Preparation, Properties, and Applications. In DNA Nanotechnology: From Structure to Function, Fan, C. Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; p 57.
[1] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[2] WANG Li, JI Shan, CHEN Qi-Bin, LIU Hong-Lai. Structural Transition of Poly(L-lactic acid) Film Induced by Compression at Air/Water Interface[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1162-1168.
[3] YUAN Shu-Wei, LÜ Rong, YU An-Chi. Photoisomerization Kinetics of IR125 and HDITCP in Ionic Liquids with Different Cation Alkyl Chain Lengths[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 987-993.
[4] YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2543-2550.
[5] SHEN Qian, GAN Lin, LIU Song, CAO Yang, WANG Zhen-Xing, HUI Jing-Shu, GUO Xue-Feng. Reversible Photomodulation of Organic Transistor Performance by Conformation-Induced Capacitive Coupling[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1941-1946.
[6] ZHU Yue, PU Min, HE Jing, EVANS David G.. Photoisomerization Mechanism of the Trans-cis Azobenzene Sulphonate Derivatives[J]. Acta Phys. -Chim. Sin., 2009, 25(11): 2296-2304.
[7] ZHANG Shu-Qiang;WANG Ya-Qiong;ZHENG Xu-Ming. Density Functional Theory Investigation of the Photoisomerization Reaction of Nitroalkanes and Nirroaromatic Compounds[J]. Acta Phys. -Chim. Sin., 2006, 22(12): 1489-1494.
[8] Liu Tian-Jun,Wu Shi-Kang. The Photoisomerization of Azobenzene for Regulating the Complex Behavior of Viologen with Eosin[J]. Acta Phys. -Chim. Sin., 1996, 12(04): 329-336.