Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (10): 1106-1115    DOI: 10.3866/PKU.WHXB201701083
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules
Bai XUE1,Tiannan CHEN1,,J. Ilja SIEPMANN1,2,*()
1 Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0240, USA
2 Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
? Current address: Department of Computer Science and Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455-0154, USA
Download: HTML     PDF(1273KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Dye-sensitized solar cells (DSSCs) are one of the most promising renewable energy technologies. Charge transfer and charge transport are pivotal processes in DSSCs, which govern solar energy capture and conversion. These processes can be probed using modern electronic structure methods. Because of the heterogeneity and complexity of the local environment of a chromophore in DSSCs (such as solvatochromism and chromophore aggregation), a part of the solvation environment should be treated explicitly during the calculation. However, because of the high computational cost and unfavorable scaling with the number of electrons of high-level quantum mechanical methods, approaches to explicitly treat the local environment need careful consideration. Two problems must be tackled to reduce computational cost. First, the number of configurations representing the solvent distribution should be limited as much as possible. Second, the size of the explicit region should be kept relatively small. The purpose of this study is to develop efficient computational approaches to select representative configurations and to limit the explicit solvent region to reduce the computational cost for later (higher-level) quantum mechanical calculations. For this purpose, an ensemble of solvent configurations around a 1-methyl-8-oxyquinolinium betaine (QB) dye molecule was generated using Monte Carlo simulations and molecular mechanics force fields. Then, a fitness function was developed using data from inexpensive electronic structure calculations to reduce the number of configurations. Specific solvent molecules were also selected for explicit treatment based on a distance criterion, and those not selected were treated as background charges. The configurations and solvent molecules selected proved to be good representatives of the entire ensemble; thus, expensive electronic structure calculations need to be performed only on this subset of the system, which significantly reduces the computational cost.



Key wordsMonte Carlo simulation      Chromophore      Spectra      Solution     
Received: 14 December 2017      Published: 13 April 2018
Corresponding Authors: J. Ilja SIEPMANN     E-mail: siepmann@umn.edu
Cite this article:

Bai XUE,Tiannan CHEN,J. Ilja SIEPMANN. Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules. Acta Phys. -Chim. Sin., 2018, 34(10): 1106-1115.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201701083     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1106

 
 
 
Solvent VCoul, GS VCoul, ES
water 0.739 0.346
ACN 0.715 0.103
 
 
Solvent R β1 β2 Eg, ZINDO β1/β2
water 0.875 ?8.52 8.20 1.77 ?1.04
ACN 0.959 ?12.1 11.6 1.77 ?1.05
water 0.875 ?10.3 9.90 1.77 ?1.04
ACN 0.953 ?10.3 9.90 1.77 ?1.04
 
 
 
Solvent R β1 β2 Eg, TD-DFT β1/β2
water 0.918 ?10.3 9.90 2.05 ?1.04
ACN 0.887 ?10.3 9.90 2.05 ?1.04
water 0.926 use Eq. (8)
ACN 0.898 use Eq. (8)
 
 
 
1 Ladomenou K. ; Kitsopoulos T. N. ; Sharma G. D. ; Coutsolelos A. G. RSC Adv. 2014, 4, 21379.
2 Green M. A. ; Emery K. ; Hishikawa Y. ; Warta W. ; Dunlop E. D. Prog. Photovolt Res. Appl. 2015, 23, 1.
3 Graetzel M. Nature 2001, 414, 338.
4 O'Regan B. ; Graetzel M. Nature 1991, 353, 737.
5 Gong J. ; Liang J. ; Sumathy K. Renew. Sust. Energ. Rev. 2012, 16, 5848.
6 Deing K. C. ; Mayerh ffer U. ; Würthner F. ; Meerholz K. Phys. Chem. Chem. Phys. 2012, 14, 8328.
7 Luo L. ; Lin C. -J. ; Tsai C. -Y. ; Wu H. -P. ; Li L. -L. ; Lo C. -F. ; Lin C. -Y. ; Diau E. W. -G. Phys. Chem. Chem. Phys. 2010, 12, 1064.
8 Pastore M. ; De Angelis F. ACS Nano 2010, 4, 556.
9 El Seoud O. A. Pure Appl. Chem. 2007, 79, 1135.
10 Tada E. B. ; Novaki L. P. ; El Seoud O. A. J. Phys. Org. Chem. 2000, 13, 679.
11 Gao J. ; Zhang J. Z. H. ; Houk K. N. Accounts Chem. Res. 2014, 47, 2711.
12 Li S. ; Li W. ; Ma J. Accounts Chem. Res. 2014, 47, 2712.
13 Wang B. ; Yang K. R. ; Xu X. ; Isegawa M. ; Leverentz H. R. ; Truhlar D. G. Accounts Chem. Res. 2014, 47, 2731.
14 He X. ; Zhu T. ; Wang X. ; Liu J. ; Zhang J. Z. H. Accounts Chem. Res. 2014, 47, 2748.
15 Coutinho K. ; De Oliveira M. J. ; Canuto S. Int. J. Quantum Chem. 1998, 66, 249.
16 Jaramillo P. ; Pérez P. ; Fuentealba P. ; Canuto S. ; Coutinho K. J. Phys. Chem. B 2009, 113, 4314.
17 Barreto R. C. ; Coutinho K. ; Georg H. C. ; Canuto S. Phys. Chem. Chem. Phys. 2009, 11, 1388.
18 Aidas K. ; Kongsted J. ; Osted A. ; Mikkelsen K. V. ; Christiansen O. J. Phys. Chem. A 2005, 109, 8001.
19 Christopher C. Essentials of Computational Chemistry: Theories and Models Chichester, UK: John Wiley & Sons, 2013.
20 Masunov A. ; Tretiak S. ; Hong J. W. ; Liu B. ; Bazan G. C. J. Chem. Phys. 2005, 122, 224505.
21 Marenich A. V. ; Cramer C. J. ; Truhlar D. G. J. Phys. Chem. B 2015, 119, 958.
22 Murugan N. A. J. Phys. Chem. B 2011, 115, 1056.
23 Wood W. W. ; Parker F. R. J. Chem. Phys. 1957, 27, 720.
24 Allen M. P. ; Tildesley D. J. Computer Simulation of Liquids Oxford, UK: Oxford University Press, 1987.
25 Ewald P. Ann. Phys. 1921, 64, 253.
26 Maitland G. C. ; Rigby M. ; Smith E. B. ; Wakeham A. Intermolecular Forces: Their Origin and Determination Oxford, UK: Pergamon Press, 1987.
27 Rai N. ; Siepmann J. I. J. Phys. Chem. B 2013, 117, 273.
28 Zhang L. ; Siepmann J. I. Theor. Chem. Acc. 2006, 115, 391.
29 Marenich A.V ; Olson R. M. ; Kelly C. P. ; Cramer C. J. ; Truhlar D. G. J. Chem. Theory Comput 2007, 3, 2011.
30 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ; et al Gaussian 09, Revision D.01 Wallingford, CT, USA: Gaussian Inc,, 2013.
31 Marenich A. V. ; Cramer C. J. ; Truhlar D. G. CM5PAC Minneapolis, MN, USA: Uniersity of Minnesota, 2011.
32 Marenich A. V. ; Jerome S. V. ; Cramer C. J. ; Truhlar D. G. J. Chem. Theor. Comput. 2012, 8, 527.
33 Martin M. G. ; Siepmann J. I. J. Phys. Chem. B 1998, 102, 2569.
34 Wick C. D. ; Stubbs J. M. ; Rai N. ; Siepmann J. I. J. Phys. Chem. B 2005, 109, 18974.
35 Jorgensen W. L. ; Chandrasekhar J. ; Madura J. D. ; Impey R. W. ; Klein M. L. J. Chem. Phys. 1983, 79, 926.
36 Thompson M. A. ; Zerner M. C. J. Am. Chem. Soc. 1991, 113, 8210.
37 Zerner M. C. ; Loew G. H. ; Kirchner R. F. ; Mueller-Westerhoff U. T. J. Am. Chem. Soc. 1980, 102, 589.
38 Hollas J. M. Modern Spectroscopy Chichester, UK: John Wiley & Sons, 2004.
39 Voityuk A. A. ; Kummer A. D. ; Michel-Beyerle M. -E. ; R?sch N. Chem. Phys. 2001, 269, 83.
40 Lin Y. L. ; Gao J. J. Chem. Theory Comput. 2007, 3, 1484.
[1] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[2] Zhinan HU,Jiantao ZUO,Meichen XIA,Dawei FANG,Shuliang ZANG. Study on Solution Enthalpies of Ionic Liquids [Cnmim][H2PO4] (n= 3, 4, 5, 6) by Using Pitzer's Equation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 933-937.
[3] Yongquan ZHOU,Yoshie SOGA,Toshio YAMAGUCHI,Yan FANG,Chunhui FANG. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 483-491.
[4] Jiale XU,Lei HU,Lu WANG,Jinxia DENG,Jun CHEN,Xianran XING. Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 339-343.
[5] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[6] Dan DONG,Zhiyuan MIN,Jun LIU,Gufeng HE. Improved Hole Injection Property of Solution-Processed MoO3 with[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1286-1292.
[7] Chang HE,Jianhui HOU. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1202-1210.
[8] Zhong-Gao LI,Tian LU,Heng GAO,Qing ZHANG,Min-Jie LI,Wei REN,Wen-Cong LU. Design of Benzobisthiadiazole Analogues as Promising Anchoring Groups for High Efficient Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1789-1795.
[9] Dan-Hui LÜ,Dan-Cheng ZHU,Chuan-Hong JIN. Preferential Substitution of Selenium along the Grain Boundaries in Monolayer MoS2(1-x)Se2x Alloy[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1514-1519.
[10] Xu LI,Qiang-Guo LI,Jian-Hong JIANG,Hui-Wen GU,Chuan-Hua LI,Sheng-Xiong XIAO,Xia LI. Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1114-1122.
[11] Meng-Fang CHANG,Lei LI,Xiao-Dan CAO,Meng-Hui JIA,Jia-Sheng ZHOU,Jin-Quan CHEN,Jian-Hua XU. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1065-1070.
[12] Zhen ZHANG,Wen-Jun XIE,Yi Isaac YANG,Geng SUN,Yi-Qin GAO. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 539-547.
[13] Jing TONG,Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. -Chim. Sin., 2017, 33(3): 513-519.
[14] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 314-328.
[15] Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 295-304.