Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (7): 1310-1323    DOI: 10.3866/PKU.WHXB201704172
FEATURE ARTICLE     
Nickel Family Metal Clusters for Catalytic Hydrogenation Processes
Bo HAN,Han-Song CHENG*()
Download: HTML     PDF(2879KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Nanoparticles of precious metals play an important role in many heterogeneous catalytic reactions due to their excellent catalytic performance. As an idealized model, gas phase metal clusters have been extensively utilized to understand catalytic mechanisms at a molecular level. Here we provide an overview of our recent studies on H2 dissociative chemisorption on nickel family clusters. The structure evolution and the stability of the metal clusters were first compared. H2 dissociation on the clusters was then carefully addressed to understand the capability of metal clusters to break the H-H bond. Two key parameters, the dissociative chemisorption energy (ΔECE) and the H sequential desorption energy (ΔEDE), were employed to characterize the catalytic activity of metal clusters. Our results show that both ΔECE and ΔEDE decline significantly as the H coverage increases. Since the catalyst is in general covered entirely by H atoms and H2 molecules in a typical hydrogenation process, and maintained at a pre-determined pressure of H2 gas, we can rationally use the calculated ΔECE and ΔEDE values at full H saturation to address the activity of metal clusters. Our results suggest that at full H coverage, each Pt atom is essentially capable of adsorbing 4 H atoms, while each Ni or Pd atom can only accommodate 2 H atoms. Considering the similar values of H desorption energies on Pt and Pd clusters, the higher average H capacity per Pt atom could probably lead to a faster reaction rate because more active H atoms are produced on the Pt catalyst particles in the hydrogenation process. Finally, the charge sensitivity of the key catalytic properties of Pt clusters for hydrogenation was systematically evaluated. The results show that the dissociation of H2 and H desorption are strongly correlated to the charge state of the Pt clusters at low H coverage. However, at high H-capacities, both ΔECE and ΔEDE fall into a narrow range, suggesting that the charge can be readily dispersed and that the Pt-H bonds average the interaction between clusters and H atoms. As a result, the H-capacities on charged clusters were found to be similar as the cluster size increased; in case of sufficiently large clusters, the reactivity of a fully saturated cluster was no longer sensitive to its charge state.



Key wordsClusters      Transition metal      Catalytic hydrogenation      Full H saturation      Charge state      Density functional theory     
Received: 12 December 2016      Published: 17 April 2017
O641  
Fund:  the National Natural Science Foundation of China(21473164);the National Natural Science Foundation of China(21203169);the National Natural Science Foundation of China(21233006);the Fundamental Research Funds for the Central Universities, China University of Geosciences, China, and Air Products and Chemicals, Inc
Corresponding Authors: Han-Song CHENG     E-mail: chghs2@gmail.com
Cite this article:

Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704172     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I7/1310

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Chen A. ; Holt-Hindle P. Chem. Rev. 2010, 110, 3767.
2 Astruc D. Inorg. Chem. 2007, 46, 1884.
3 Biffis A. ; Zecca M. ; Basato M. J. Mol. Catal. A: Chem. 2001, 173, 249.
4 Lang S. M. ; Bernhardt T. M. Phys. Chem. Chem. Phys. 2012, 14, 9255.
5 Tao F. ; Grass M. E. ; Zhang Y. ; Butcher D. R. ; Renzas J. R. ; Liu Z. ; Chung J. Y. ; Mun B. S. ; Salmeron M. ; Somorjai G. A. Science 2008, 322, 932.
6 Lim B. ; Jiang M. ; Camargo P. H. C. ; Cho E. C. ; Tao J. ; Lu X. ; Zhu Y. ; Xia Y. Science 2009, 324, 1302.
7 Imaoka T. ; Kitazawa H. ; Chun W. J. ; Omura S. ; Albrecht K. ; Yamamoto K. J. Am. Chem. Soc. 2013, 135, 13089.
8 Zhou C. G. ; Yao S. J. ; Zhang Q. F. ; Wu J. P. ; Yang M. ; Forrey R. C. ; Cheng H. S. J. Mol. Model. 2011, 17, 2305.
9 Zhou C. ; Yao S. ; Wu J. ; Chen L. ; Forrey R. R. ; ChengH. J. Comput. Theor. Nanosci. 2009, 6, 1.
10 Szarek P. ; Urakami K. ; Zhou C. ; Cheng H. ; Tachibana A. J. Chem. Phys. 2009, 130, 084111.
11 Chen L. ; Zhou C. G. ; Wu J. P. ; Cheng H. S. Front. Phys. China 2009, 4, 356.
12 Zhou C. ; Yao S. ; Wu J. ; Forrey R. C. ; Chen L. ; Tachibana A. ; Cheng H. Phys. Chem. Chem. Phys. 2008, 10, 5445.
13 Zhou C. ; Wu J. ; Nie A. ; Forrey R. C. ; Tachibana A. ; Cheng H. J. Phys. Chem. C 2007, 111, 12773.
14 Godbey D. J. ; Somorjai G. A. Surf. Sci. 1988, 204, 301.
15 ChristmannK. Surf. Sci. Rep. 1988, 9, 1.
16 Papoian G. ; N rskov J. K. ; Hoffmann R. J. Am. Chem. Soc. 2000, 122, 4129.
17 Hammer B. ; Norskov J. K Nature 1995, 376, 238.
18 Olsen R. A. ; Kroes G. J. ; Baerends E. J. J. Chem. Phys. 1999, 111, 11155.
19 Watson G. W. ; Wells R. P. K. ; Willock D. J. ; Hutchings G. J. J. Phys. Chem. B 2001, 105, 4889.
20 Nobuhara K. ; Kasai H. ; Di o W. A. ; Nakanishi H. Surf. Sci. 2004, 566–568 (Part 2), 703.
21 Nobuhara K. ; Kasai H. ; Nakanishi H. ; Okiji A. J. Appl. Phys. 2002, 92, 5704.
22 Deng J. ; Li H. ; Xiao J. ; Tu Y. ; Deng D. ; Yang H. ; Tian H. ; Li J. ; Ren P. ; Bao X. Energy Environ. Sci. 2015, 8, 1594.
23 Wei H. ; Liu X. ; Wang A. ; Zhang L. ; Qiao B. ; Yang X. ; Huang Y. ; Miao S. ; Liu J. ; Zhang T. Nat. Comm. 2014, 5, 5634.
24 Shin S. I. ; Go A. ; Kim I. Y. ; Lee J. ; Lee Y. ; Hwang S.-J. Energy Environ. Sci. 2013, 6, 608.
25 Lei Y. ; Mehmood F. ; Lee S. ; Greeley J. ; Lee B. ; Seifert S. ; Winans R. E. ; Elam J. W. ; Meyer R. J. ; Redfern P. C. ; Teschner D. ; Schlogl R. ; Pellin M. J. ; Curtiss L. A. ; Vajda S. Science 2010, 328, 224.
26 Corma A. ; Serna P. ; Concepcion P. ; Juan Calvino J. J. Am. Chem. Soc. 2008, 130, 8748.
27 Liu X. Y. ; Wang A. ; Zhang T. ; Mou C.-Y Nano Today 2013, 8, 403.
28 Campbell C. T. Nat. Chem. 2012, 4, 597.
29 Vayssilov G. N. ; Lykhach Y. ; Migani A. ; Staudt T. ; Petrova G. P. ; Tsud N. ; Skala T. ; Bruix A. ; Illas F. ; Prince K. C. ; Matolin V. ; Neyman K. M. ; Libuda J. Nat. Mater. 2011, 10, 310.
30 Anderson P. E. ; Rodriguez N. M. Chem. Mater. 2000, 12, 823.
31 Barrio L. ; Liu P. ; Rodríguez J. A. ; Campos-Martín J. M. ; Fierro J. L. G. J. Chem. Phys. 2006, 125, 164715.
32 Liu Z.-P. ; Hu P. J. Am. Chem. Soc. 2003, 125, 1958.
33 Gong X.-Q. ; Selloni A. ; Dulub O. ; Jacobson P. ; Diebold U. J. Am. Chem. Soc. 2008, 130, 370.
34 Liu X. ; Dilger H. ; Eichel R. A. ; Kunstmann J. ; Roduner E. J. Phys. Chem. B 2016, 110, 2013.
35 Okamoto Y. Chem. Phys. Lett. 2005, 405, 79.
36 Okamoto Y. Chem. Phys. Lett. 2006, 429, 209.
37 Gdowski G. E. ; Fair J. A. ; Madix R. J. Surf. Sci. 1983, 127, 541.
38 Richter L. J. ; Ho W. Phys. Rev. B 1987, 36, 9797.
39 Au C. T. ; Zhou T. J. ; Lai W. J. Catal. Lett. 1999, 62, 147.
40 Watari N. ; Ohnishi S. J. Chem. Phys. 1997, 106, 7531.
41 Koszinowski K. ; Schroder D. ; Schwarz H. J. Phys. Chem. A 2003, 107, 4999.
42 Swart I. ; Fielicke A. ; Redlich B. ; Meijer G. ; Weckhuysen B. M. ; De Groot F. M. F. J. Am. Chem. Soc. 2007, 129, 2516.
43 Swart I. ; De Groot F. M. F. ; Weckhuysen B. M. ; Gruene P. ; Meijer G. ; Fielicke A. J. Phys. Chem. A 2008, 112, 1139.
44 Wang L. S. ; Cheng H. S. ; Fan J. W. J. Chem. Phys. 1995, 102, 9480.
45 Hakkinen H. ; Yoon B. ; Landman U. ; Li X. ; Zhai H. J. ; Wang L. S. J. Phys. Chem. A 2003, 107, 6168.
46 Castleman A. W. ; Keesee R. G. Chem. Rev. 1986, 86, 589.
47 Deheer W. A. Rev. Mod. Phys. 1993, 65, 611.
48 Kerpal C. ; Harding D. J. ; Rayner D. M. ; Fielicke A. J. Phys. Chem. A 2013, 117, 8230.
49 Szarek P. ; Urakami K. ; Zhou C. ; Cheng H. ; Tachibana A. J. Chem. Phys. 2009, 130
50 Chen L. ; Cooper A. C. ; Pez G. P. ; Cheng H. J. Phys. Chem. C 2007, 111, 5514.
51 Nie A. ; Wu J. ; Zhou C. ; Yao S. ; Luo C. ; Forrey R. C. ; Cheng H. Int. J. Quantum Chem. 2007, 107, 219.
52 Luo C. ; Zhou C. ; Wu J. ; Kumar T. J. D. ; Balakrishnan N. ; Forrey R. C. ; Cheng H. Int. J. Quantum Chem. 2007, 107, 1632.
53 Barreteau C. ; Guirado-López R. ; Spanjaard D. ; Desjonquères M. C. ; Ole? A. M. Phys. Rev. B 2000, 61, 7781.
54 Li J. N. ; Pu M. ; Ma C. C. ; Tian Y. ; He J. ; Evans D. G. J. Mol. Catal. A: Chem. 2012, 359, 14.
55 Kadioglu Y. ; Demirkiran A. ; Yaraneri H. ; Akturk O. U. J. Alloy. Compd. 2014, 591, 188.
56 Ignatov S. K. ; Okhapkin A. I. ; Gadzhiev O. B. ; Razuvaev A. G. ; Kunz S. ; Baumer M. J.Phys. Chem. C 2016, 120, 18570.
57 Liu X. J. ; Tian D. X. ; Meng C. G. J. Mol. Struct. 2015, 1080, 105.
58 Pelzer A. W. ; Jellinek J. ; Jackson K. A. J. Phys. Chem. A 2015, 119, 3594.
59 Shi Y. ; Ervin K. M. J. Chem. Phys. 1998, 108, 1757.
60 Balteanu I. ; Balaj O. P. ; Beyer M. K. ; Bondybey V. E. Phys. Chem. Chem. Phys. 2004, 6, 2910.
61 Huang L. ; Han B. ; Xi Y. J. ; Forrey R. C. ; Cheng H. S. ACS Catal. 2015, 5, 4592.
62 Harding D. J. ; Kerpal C. ; Meijer G. ; Fielicke A Angew. Chem. Int. Ed. 2012, 51, 817.
63 Helali Z. ; Markovits A. ; Minot C. ; Abderrabba M. Chem. Phys. Lett. 2013, 565, 45.
64 Bruix A. ; Rodriguez J. A. ; Ramirez P. J. ; Senanayake S. D. ; Evans J. ; Park J. B. ; Stacchiola D. ; Liu P. ; Hrbek J. ; Illas F. J. Am. Chem. Soc. 2012, 134, 8968.
65 Kerpal C. ; Harding D. J. ; Rayner D. M. ; Fielicke A. J. Phys. Chem. A 2013, 117, 8230.
[1] Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754.
[2] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[3] Chiaki TOMINAGA,Dailo HIKOSOU,Issey OSAKA,Hideya KAWASAK. Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 805-811.
[4] Lina YANG,Li HUANG,Xueyang SONG,Wenxue HE,Yong JIANG,Zhihu SUN,Shiqiang WEI. In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 762-769.
[5] Tatsuya HIGAKI,Rongchao JIN. Structural Evolution Patterns of FCC-Type Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 755-761.
[6] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[7] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[8] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[9] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[10] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[11] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[12] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[13] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[14] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[15] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.