Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (9): 1875-1883    DOI: 10.3866/PKU.WHXB201705088
ARTICLE     
Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations
Chi CHEN1,Xue ZHANG2,Zhi-You ZHOU2,Xin-Sheng ZHANG2,*(),Shi-Gang SUN1,*()
1 State Key Laboratory of Chemical Engineering, College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
2 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
Download: HTML     PDF(2380KB) Export: BibTeX | EndNote (RIS)      

Abstract  

S doping in Fe/N/C non-precious metal catalysts is an effective approach to further improve their catalytic activity for the oxygen reduction reaction (ORR). However, the enhancement mechanism is not yet clear. Here, we synthesized an Fe/N/C catalyst using melamine-formaldehyde resin as the N and C precursors, CaCl2 as the template, and FeCl3 as the Fe precursor. The effects of S doping on the morphology, textural property, composition, and ORR catalytic activity were investigated by adding various amounts of KSCN as a precursor. Transmission electron microscopy (TEM) and N2 adsorption-desorption isotherm results revealed that S prevented the growth of Fe-containing nanoparticles, and facilitated the formation of a porous structure, which increased both the catalyst surface area and mass transfer rate. X-ray photoelectron spectroscopy (XPS) results indicated that a suitable amount of S precursor led to a high doping level of S and provided the highest ORR activity. However, too much S in the precursor decreased the doping levels of both Fe and S, due to the formation of FeS, which could be completely removed by acid leaching. Density functional theory (DFT) calculations showed that the addition of S in an Fe-N4 macrocycle could enhance the interaction strength of the Fe―O bond between the O2 molecule or the intermediate OOHspecies and Fe in the Fe-N4 structure, resulting in a significant decrease in the O―O bond energy, and may help in bond breaking in subsequent reactions, facilitating the ORR process.



Key wordsOxygen reduction reaction      Non-precious metal catalyst      Fe/N/C materials      S-doping      Density functional theory     
Received: 30 March 2017      Published: 08 May 2017
O646  
Fund:  the National Natural Science Foundation of China(21373175);the National Natural Science Foundation of China(21621091)
Corresponding Authors: Xin-Sheng ZHANG,Shi-Gang SUN     E-mail: xszhang@ecust.edu.cn;sgsun@xmu.edu.cn
Cite this article:

Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705088     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I9/1875

Fig 1 Synthesis of Resin-FeNS/C catalyst.
Fig 2 TEM images of Resin-FeNS/C-a/b (a/b = 1/0, 1/3, 1/6) catalyst. (a) Resin-FeNS/C-1/0, (b) Resin-FeNS/C-1/3, (c) Resin-FeNS/C-1/6.
Fig 3 XRD patterns of Resin-FeNS/C-a/b(a/b = 1/0, 1/3, 1/6) catalyst.
Fig 4 N2 sorption isotherms of Resin-FeNS/C-a/b(a/b = 1/0, 1/3, 1/6) catalyst. (1) Resin-FeNS/C-1/0, (2) Resin-FeNS/C-1/3, (3) Resin-FeNS/C-1/6.
Fig 5 XPS survey spectra (a) and high-resolution N 1s (b), S 2p (c), Fe 2p (d) XPS of Resin-FeNS/C-a/b(a/b = 1/0, 1/3, 1/6) catalyst. (1) Resin-FeNS/C-1/0, (2) Resin-FeNS/C-1/3, (3) Resin-FeNS/C-1/6.
Catalyst C/% N/% O/% S/% Fe/%
Resin-FeNS/C-1/088.835.675.190.070.24
Resin-FeNS/C-1/384.816.627.440.820.31
Resin-FeNS/C-1/685.386.957.170.470.03
Table 1 Element atomic concentration of Resin-FeNS/C-a/b (a/b = 1/0, 1/3, 1/6) by XPS.
Catalyst C/% (w) N/% (w) S/% (w) H/% (w)
Resin-FeNS/C-1/068.171.310.321.16
Resin-FeNS/C-1/368.023.272.781.56
Resin-FeNS/C-1/673.615.871.351.30
Table 2 CHNS elemental analysis of Resin-FeNS/C-a/b(a/b = 1/0, 1/3, 1/6).
Fig 6 ORR polarization curves (a) and comparison of mass activity and half-wave potential (b) of Resin-FeNS/C-a/b (a/b = 1/0, 1/3, 1/6) catalyst. Catalyst loadings were 0.6 mg·cm-2; The electrolyte was O2-saturated 0.1 mol·L-1 H2SO4; Rotating speed was 900 r·min-1; Scan rate was 10 mV·s-1.
Fig 7 Four kinds of S doping site on Fe-N4/C structure (a) and the side view of the optimized S-doped Fe-N4/C (b).
Catalyst O2/eV OOH/eV O/eV OH/eV
Fe-N4/C-2.411-1.513-3.829-2.517
Fe-N4S1/C-2.651-1.675-3.954-2.713
Fe-N4S2/C-2.599-1.818-3.944-2.694
Fe-N4S3/C-2.602-1.899-4.172-2.799
Fe-N4S4/C-2.374-1.516-3.841-2.519
Table 3 The adsorption energy (Ead) of the species (O2, OOH, O, and OH) adsorbed on Fe-N4S/C.
Catalyst O2 (nm) OOH (nm) O (nm) OH (nm)
Fe―O O―O Fe―O O―O Fe―O O―O
Fe-N4/C0.1800.1290.1780.1500.1670.186
Fe-N4S1/C0.1730.1370.1740.1540.1630.184
Fe-N4S2/C0.1760.1350.1700.1570.1630.184
Fe-N4S3/C0.1760.1350.1700.1570.1610.181
Fe-N4S4/C0.1810.1300.1770.1520.1670.186
Table 4 The atom distance of the species (O2, OOH, O, OH) adsorbed on Fe-N4S/C.
Fig 8 The structures of the species (O2 (a), OOH (b), O (c), OH (d)) adsorbed on Fe-N4S/C.
Fig 9 Free energy curves of hydrogenation of adsorbed O2 on Fe-N4/C and Fe-N4S/C structures.
1 Wang Y. ; Chen K. S. ; Mishler J. ; Cho S. C. ; Adroher X. C. Appl. Energy 2011, 88, 981.
2 Guo S. J. ; Zhang S. ; Sun S. H. Angew. Chem. Int. Ed. 2013, 52, 8526.
3 Morozan A. ; Jousselme B. ; Palacin S. Energ. Environ. Sci. 2011, 4, 1238.
4 Shao M. H. ; Chang Q. W. ; Dodelet J. P. ; Chenitz R. Chem. Rev. 2016, 116, 3594.
5 Lefèvre M. ; Proietti E. ; Jaouen F. ; Dodelet J. P. Science 2009, 324, 71.
6 Proietti E. ; Jaouen F. ; Lefèvre M. ; Larouche N. ; Tian J. ; Herranz J. ; Dodelet J. P. Nat. Commun. 2011, 2, 416.
7 Tian J. ; Morozan A. ; Sougrati M. T. ; Lefèvre M. ; Chenitz R. ; Dodelet J. P. ; Jones D. ; Jaouen F. Angew. Chem. Int. Ed. 2013, 52, 6867.
8 Tao L. ; Wang Q. ; Dou S. ; Ma Z. L. ; Huo J. ; Wang S. Y. ; Dai L.M. Chem. Commun. 2016, 2764.
9 Choi C. H. ; Chung M. W. ; Park S. H. ; Woo S. I. Phys. Chem. Chem. Phys. 2013, 15, 1802.
10 Wang S. Y. ; Zhang L. P. ; Xia Z. H. ; Roy A. ; Chang D. W. ; Baek J. B. ; Dai L. M. Angew. Chem. Int. Ed. 2012, 51, 4209.
11 Xue Y. Z. ; Wu B. ; Bao Q. L. ; Liu Y. Q. Small 2014, 10, 2975.
12 Zheng Y. ; Jiao Y. ; Ge L. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Ed. 2013, 125, 3192.
13 Tylus U. ; Jia Q. Y. ; Strickland K. ; Ramaswamy N. ; Serov A. ; Atanassov P. ; Mukerjee S. J. Phys. Chem. C 2014, 118, 8999.
14 Wu G. ; More K. L. ; Johnston C. M. ; Zelenay P. Science 2011, 332, 443.
15 Wang Q. ; Zhou Z. Y. ; Lai Y. J. ; You Y. ; Liu J. G. ; Wu X. L. ; Terefe E. ; Chen C. ; Song L. ; Rauf M. ; Tian N. ; Sun S. G. J. Am. Chem. Soc. 2014, 136, 10882.
16 Wang Y. C. ; Lai Y. J. ; Song L. ; Zhou Z. Y. ; Liu J. G. ; Wang Q. ; Yang X. D. ; Chen C. ; Shi W. ; Zheng Y. P. ; Rauf M. ; Sun S. G. Angew. Chem. Int. Ed. 2015, 54, 9907.
17 Ferrandon M. ; Kropf A. J. ; Myers D. J. ; Artyushkova K. ; Kramm U. ; Bogdanoff P. ; Wu G. ; Johnston C. M. ; Zelenay P. J. Phys. Chem. C 2012, 116, 16001.
18 Liang J. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Ed. 2012, 51, 11496.
19 Kattel S. ; Wang G. F. J. Mater. Chem. A 2013, 1, 10790.
20 Wu G. ; Santandreu A. ; Kellogg W. ; Gupta S. ; Ogoke O. ; Zhang H. G. ; Wang H. L. ; Dai L. M. Nano Energy 2016, 29, 83.
21 Yang X. D. ; Zheng Y. P. ; Yang J. ; Shi W. ; Zhong J. H. ; Zhang C.K. ; Zhang X. ; Hong Y. H. ; Peng X. X. ; Zhou Z. Y. ; Sun S. G. ACS Catal. 2017, 7, 139.
22 Zitolo A. ; Goellner V. ; Armel V. ; Sougrati M. T. ; Mineva T. ; Stievano L. ; Fonda E. ; Jaouen F. Nat. Mater. 2015, 14, 937.
23 Chen C. ; Zhou Z. Y. ; Wang Y. C. ; Zhang X. ; Yang X. D. ; Zhang X. S. ; Sun S. G. Chin. J. Catal. 2017, 38, 673.
24 CP2K(Open Source Molecular Dynamics).Available online:http://www.cp2k.org (accessed on 4 May 2017).
25 Goedecker S. ; Teter M. ; Hutter J. Phys. Rev. B 1996, 54, 1703.
26 Hartwigsen C. ; Goedecker S. ; Hutter J. Phys. Rev. B 1998, 58, 3641.
27 Lippert G. ; Hutter J. ; Parrinello M. Mol. Phys. 1997, 92, 477.
28 Deng D. H. ; Yu L. ; Chen X. Q. ; Wang G. X. ; Jin L. ; Pan X. L. ; Deng J. ; Sun G. Q. ; Bao X. H. Angew. Chem. Int. Ed. 2013, 52, 371.
29 Xiao M. L. ; Zhu J. B. ; Feng L. G. ; Liu C. P. ; Xing W. Adv. Mater. 2015, 27, 2521.
30 Wohlgemuth S. A. ; White R. J. ; Willinger M. G. ; Titirici M. M. ; Antonietti M. Green Chem. 2012, 14, 1515.
31 Wu M. ; Wang J. ; Wu Z. X. ; Xin H. L. ; Wang D. L. J. Mater. Chem. A 2015, 3, 7727.
32 Zhang L. P. ; Niu J. B. ; Li M. T. ; Xia Z. H. J. Phys. Chem. C 2014, 118, 3545.
33 Zhang L. P. ; Xia Z. H. J. Phys. Chem. C 2011, 115, 11170.
34 Wang J. ; Li L. ; Wei Z. D. Acta. Phys.-Chim. Sin. 2016, 32, 321.
34 王俊; 李莉; 魏子栋. 物理化学学报, 2016, 32, 321.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[12] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[13] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[14] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[15] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.