Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (9): 1803-1810    DOI: 10.3866/PKU.WHXB201705104
ARTICLE     
Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors
Yu-Yu LIU1,Jie-Wei LI2,Yi-Fan BO1,Lei YANG1,Xiao-Fei ZHANG3,Ling-Hai XIE1,*(),Ming-Dong YI1,Wei HUANG1,2,*()
1 Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China
2 Key Laboratory of Flexible Electronics(KLOFE) & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
3 College of Mathematics and Information science, Guangxi University, Nanning 530004, P. R. China
Download: HTML     PDF(3304KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

[4]Cyclo-9, 9-dimethyl-2, 7-fluorenylene ([4]CF) was used as a model compound to explore the steric strain effect on the structures and photoelectrical properties of materials. A series of strained cyclic polyfluorene materials, [n]CFs (n=3-8), was designed. It was found that the strain energy decreased and the energy gap increased as the number of n and ring diameter increased. The ionization potential and electronic affinity tended to increase and decrease as the strain energy decreased at the same number of [n]CFs, respectively. With a balance between hole and electron reorganization energies in the system, these compounds demonstrated great potential as ambipolar materials. It was also found that [n]CFs showed an obvious blue shift in their emission spectra wavelengths (λem2) as the strain energy decreased. Steric strain provides a powerful tool for the design of multifunctional semiconductors in organic optoelectronics.



Key wordsFluorene material      Organic semiconductor      Strained macrocycle      Opto-electronic property      Density functional theory calculation     
Received: 21 March 2017      Published: 10 May 2017
O641  
  O649  
Fund:  the National Natural Science Foundation of China(U1301243);the National Natural Science Foundation of China(2150314);the National Natural Science Foundation of China(21602111);Doctoral Fund of Ministry of Education of China(20133223110007);Natural Science Foundation of Jiangsu Province of China(BM2012010);Natural Science Foundation of Jiangsu Province of China(BK20150832);Program for Postgraduates Research Innovation in University of Jiangsu Province, China(CXZZ13_0470);Nanjing University of Post and Telecommunications, China(NY214176);Nanjing University of Post and Telecommunications, China(NY215172);Nanjing University of Post and Telecommunications, China(NY217082);Nanjing University of Post and Telecommunications, China(2016XSG03);Synergetic Innovation Center for Organic Electronics and Information Displays and Excellent Science and Technology Innovation Team of Jiangsu Higher Education Institutions, China (2013), the Priority Academic Program Development of Jiangsu Higher Education Institutions
Corresponding Authors: Ling-Hai XIE,Wei HUANG     E-mail: iamlhxie@njupt.edu.cn;iamwhuang@njupt.edu.cn
Cite this article:

Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705104     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I9/1803

 
 
 
COMPD IP(v) IP(a) HEPa EA(v) EA(a) EEPb λhole λelectron
[4]CF (a) 5.73 5.63 5.53 0.81 0.91 1.00 0.20 0.20
[4]CF (b) 5.74 5.65 5.55 0.80 0.88 0.96 0.19 0.17
[4]CF (c) 5.79 5.68 5.57 0.74 0.85 0.97 0.22 0.22
[4]CF (d) 5.85 5.74 5.63 0.66 0.77 0.87 0.22 0.21
[4]LF (d) 5.99 5.90 5.81 0.61 0.72 0.84 0.17 0.23
[4]CF (e) 5.90 5.79 5.69 0.63 0.73 0.84 0.22 0.21
[4]LF (e) 6.02 5.94 5.85 0.56 0.68 0.80 0.17 0.24
 
COMPD Electronic transitions Wavelength/nm f Main configuration
[4]CF (a) S1S0 499 0.00 HOMO → LUMO (98%)
S4 ← S0 363 1.21 HOMO -1 → LUMO (44%)
HOMO → LUMO + 1 (55%)
S5S0 358 1.30 HOMO – 2 → LUMO (45%) HOMO- > LUMO+2(54%)
[4]CF (b) S1S0 492 0.00 HOMO → LUMO (98%)
S3S0 366 1.35 HOMO -1 → LUMO (50%)
S5S0 353 1.10 HOMO → LUMO +1 (49%)
[4]CF (c) S1S0 475 0.04 HOMO → LUMO (97%)
S4S0 356 1.01 HOMO -1 → LUMO (36%) HOMO- > LUMO +2 (62%)
S5S0 353 1.22 HOMO -2 → LUMO (44%), HOMO- > LUMO+1 (54%)
[4]CF (d) S1S0 450 0.00 HOMO -2 → LUMO (41%), HOMO- > LUMO+2 (58%)
S4S0 347 1.12 HOMO → LUMO (97%)
S5S0 347 1.12 HOMO → LUMO + 1 (53%)
[4]LF (d) S1S0 381 2.84 HOMO → LUMO (29%)
[4]CF (e) S1S0 444 0.00 HOMO → LUMO + 2 (53%)
S4S0 342 1.21 HOMO → LUMO (28%)
[4]LF (e) S1S0 376 2.93 HOMO → LUMO (96%)
 
COMPD Electronic transitions Wavelength/nm f Main configuration
[4]CF(a) S0S1 670 0.00 HOMO → LUMO (99%)
S0S4 404 1.44 HOMO -1 → LUMO (50%) HOMO- > LUMO+1 (50%)
S0S5 401 1.50 HOMO -2 → LUMO (48%) HOMO- > LUMO+2 (51%)
[4]CF(b) S0S1 639 0.00 HOMO → LUMO (99%)
S0S4 405 1.50 HOMO -1 → LUMO (50%) HOMO- > LUMO+1 (50%)
S0S5 391 1.36 HOMO -2 → LUMO (47%) HOMO- > LUMO+2 (52%)
[4]CF(c) S0S1 645 0.01 HOMO → LUMO (99%)
S0S4 399 1.41 HOMO -2 → LUMO (47%) HOMO- > LUMO+2 (50%)
S0S5 399 1.43 HOMO -1 → LUMO (47%) HOMO- > LUMO+1 (50%)
[4]CF(d) S0S1 606 0.00 HOMO → LUMO (98%)
S0S4 392 1.37 HOMO -1 → LUMO (47%) HOMO- > LUMO +1 (48%)
S0S5 392 1.38 HOMO -2 → LUMO (48%) HOMO- > LUMO +2 (48%)
[4]LF(d) S0S1 457 3.16 HOMO → LUMO (98%)
[4]CF(e) S0S1 595 0.00 HOMO → LUMO (98%)
S0S4 385 1.45 HOMO -1 → LUMO (49%) HOMO- > LUMO+1 (41%)
S0S5 385 1.45 HOMO -2 → LUMO (49%) HOMO- > LUMO+2 (41%)
[4]LF(e) S0S1 450 3.25 HOMO → LUMO (98%)
 
1 Aggarwal A. V. ; Thiessen A. ; Idelson A. ; Kalle D. ; Würsch D. ; Stangl T. ; Steiner F. ; Jester S. S. ; Vogelsang J. ; H?ger S. Nat. Chem. 2013, 5 (11), 964.
2 Adamska L. ; Nayyar I. ; Chen H. ; Swan A. K. ; Oldani N. ; Fernandez-Alberti S. ; Golder M. R. ; Jasti R. ; Doorn S. K. ; Tretiak S. Nano letters 2014, 14 (11), 6539.
3 My?liwiec D. ; Kondratowicz M. ; Lis T. ; Chmielewski P. J. ; Stepien M. J.Am. Chem. Soc. 2015, 137 (4), 1643.
4 Darzi E. R. ; Jasti R. Chem. Soc. Rev. 2015, 44 (18), 6401.
5 Li S. ; Huang C. ; Thakellapalli H. ; Farajidizaji B. ; Popp B. V. ; Petersen J. L. ; Wang K. K. Org. Lett. 2016, 18 (9), 2268.
6 Li Y. ; Zhao J. W ; Yin X. ; Yin G. ChemPhy Chem 2006, 7 (12), 2593.
7 Zhao J. ; Li Y. ; Liu H. ; Li P. ; Yin G. J. Molec. Struct. -Theochem 2008, 861 (1), 7.
8 Iwamoto T. ; Watanabe Y. ; Sadahiro T. ; Haino T. ; Yamago S. Angew. Chem. 2011, 123 (36), 8492.
9 Nakanishi Y. ; Omachi H. ; Matsuura S. ; Miyata Y. ; Kitaura R. ; Segawa Y. ; Itami K. ; Shinohara H. Angew. Chem. Int. Edit. 2014, 53 (12), 3102.
10 Isobe H. ; Nakamura K. ; Hitosugi S. ; Sato S. ; Tokoyama H. ; Yamakado H. ; Ohno K. ; Kono H. Chem. Sci. 2015, 6 (5), 2746.
11 Son H.-J. ; Jin S. ; Patwardhan S. ; Wezenberg S. J. ; Jeong N.C. ; So M. ; Wilmer C. E. ; Sarjeant A. A. ; Schatz G. C. ; Snurr R. Q. ; Farha O. K. ; Wiederrecht G. P. ; Hupp J. T. J.Am. Chem. Soc. 2013, 135 (2), 862.
12 Omachi H. ; Nakayama T. ; Takahashi E. ; Segawa Y. ; Itami K. Nat. Chem. 2013, 5 (7), 572.
13 Itami K. Pure. Appl. Chem. 2012, 84 (4), 907.
14 Tahara K. ; Tobe Y. Chem. Rev. 2006, 106 (12), 5274.
15 Iyoda M. ; Yamakawa J. ; Rahman M. J. Angew. Chem. Int. Edit. 2011, 50 (45), 10522.
16 Fujitsuka M. ; Cho D. W. ; Iwamoto T. ; Yamago S. ; Majima T. Phys. Chem. Chem. Phys. 2012, 14 (42), 14585.
17 Chen H. ; Golder M. R. ; Wang F. ; Jasti R. ; Swan A. K. Carbon 2014, 67, 203.
18 Xie L. H. ; Yin C.-R. ; Lai W. Y. ; Fan Q. L. ; Huang W. Prog. Polym. Sci. 2012, 37 (9), 1192.
19 Fomina N. ; Hogen-Esch T. E. Macromolecules 2008, 41 (11), 3765.
20 Simon S. C. ; Schmaltz B. ; Rouhanipour A. ; Raeder H. J. ; Muellen K. Adv. Mater. 2009, 21 (1), 83.
21 Liu Y. Y. ; Lin J.-Y. ; Bo Y. F. ; Xie L.-H. ; Yi M. D. ; Zhang X. W. ; Zhang H. M. ; Loh T.-P. ; Huang W. Org. Lett. 2016, 18 (2), 172.
22 Kayahara E. ; Qu R. ; Kojima M. ; Iwamoto T. ; Suzuki T. ; Yamago S. Chem. Eur. J. 2015, 21 (52), 18939.
23 Segawa Y. ; Fukazawa A. ; Matsuura S. ; Omachi H. ; Yamaguchi S. ; Irle S. ; Itami K. Org. Biomol. Chem. 2012, 10 (30), 5979.
24 Segawa Y. ; Omachi H. ; Itami K. Org. Lett. 2010, 12 (10), 2262.
25 Sayed M. ; Biedermann F. ; Uzunova V. D. ; Assaf K. I. ; Bhasikuttan A. C. ; Pal H. ; Nau W. M. ; Mohanty J. Chem. Eur. J. 2015, 21 (2), 691.
26 Zou L. Y. ; Ren A. M. ; Feng J. K. ; Liu Y. L. ; Ran X. Q. ; Sun C. C. J.Phys. Chem. A 1217, 2
27 Frisch, M.; Trucks, G.; Schlegel, H.; et al. Gaussian 09, Revision A.2; Gaussian Inc.: Wallingford, CT, 2009
28 Lu T. ; Chen F. J. Comput. Chem. 2012, 33 (5), 580.
29 Lu, T. Multiwfn, Version 3.3; A Multifunctional WavefunctionAnalyzer, 2016, available at http://multiwfn.codeplex.com (accessed Sep. 18, 2016).
30 Lewis S. E. Chem. Soc. Rev. 2015, 44 (8), 2221.
31 Liu Z. ; Yan X. ; Li L. ; Wu G. Chem. Phys. Lett. 2015, 641, 5.
32 Camacho C. ; Niehaus T. A. ; Itami K. ; Irle S. Chem. Sci. 2013, 4 (1), 187.
33 Li S.-B. ; Duan Y. A. ; Geng Y. ; Li H.-B. ; Zhang J. Z. ; Xu H. L. ; Zhang M. ; Su Z. M. Phys. Chem. Chem. Phys. 2014, 16 (47), 25799.
[1] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[2] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[3] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[4] Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 242-248.
[5] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2264-2270.
[6] Jian-Hong LIU,Cun-Qin Lü,Chun JIN,Gui-Chang WANG. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 950-960.
[7] Zong-Yan ZHAO,Fan TIAN. Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2511-2517.
[8] Hui-Yun WEI,Guo-Shuai WANG,Hui-Jue WU,Yan-Hong LUO,Dong-Mei LI,Qing-Bo MENG. Progress in Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 201-213.
[9] CAO Xiao-Xiao, SU Yan, ZHAO Ji-Jun, LIU Chang-Ling, ZHOU Pan-Wang. Stability and Raman Spectroscopy of Alkane Guest Molecules (CnHm, n≤6, m≤14) in 51262 and 51264 Water Cavities by Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1437-1446.
[10] WU Nan, HE Zhi-Qun, XU Min, XIAO Wei-Kang. Recent Developments of Azatriphenylene Materials as n-Type Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1001-1016.
[11] WANG Chen, WEI Zi-Zhang, LÜ Yong-Kang, XING Bin, WANG Gui-Chang. Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 723-730.
[12] XIE Ling-Hai, CHANG Yong-Zheng, GU Ju-Fen, SUN Rui-Juan, LI Jie-Wei, ZHAO Xiang-Hua, HUANG Wei. Design of Organic/Polymeric π-Semiconductors: the Four-Element Principle[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1784-1794.
[13] NAN Guang-Jun, ZHENG Ren-Hui, SHI Qiang, SHUAI Zhi-Gang. Mixed Quantum-Classical Approaches to Calculating Charge Transfer Rate Constants: Applications to Realistic Systems[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1755-1760.
[14] Huang Han;Yan Xin-Cheng;Mao Hong-Ying;Chen Qiao;Qian Hui-Qin;Zhang Jian-Hua;Li Hai-Yang;He Pi-Mo;Bao Shi-Ning. The Electronic States of Ordered Thin Film of Perylene on Ag (110)[J]. Acta Phys. -Chim. Sin., 2004, 20(08): 892-896.
[15] Zhang Qi-Yuan; Yan Ji-Min; Zhang Da-Ren. Investigation on the Structure of Electronic Energy Bands of Polydiacetylenes[J]. Acta Phys. -Chim. Sin., 1993, 9(02): 256-262.