Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (11): 2199-2206    DOI: 10.3866/PKU.WHXB201705226
ARTICLE     
Absorption Spectra of Azobenzene Molecules on Au Nanoparticle Surface
Jin SUN*(),Zong-Ling DING,Yuan-Qin YU,Guang LI
Download: HTML     PDF(1565KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this paper, a real-time time-dependent density functional theory (TDDFT) coupled with the classical electrodynamics finite difference time domain (FDTD) technique is employed to investigate the optical properties of hybrid systems composed of gold nanoparticles (NPs) and the azobenzene adsorbate. The results demonstrate that the molecular absorption spectra over the entire energy range can be enhanced by localized surface plasmon resonance (LSPR) of Au NPs. However, the electronic coupling between the azobenzene and Au nanoparticles influences the energy and intensity of some special absorption peaks, leading to quite different spectral profiles of the hybrid complexes compared to those of isolated molecules or sole NPs. The plasmonic enhancement is also dependent on the NP-molecule separation distance and the geometrical parameters of NPs.



Key wordsAzobenzene      Metallic nanoparticle      Plasmon      Absorption spectrum     
Received: 30 March 2017      Published: 22 May 2017
O644  
  O641  
Fund:  the National Natural Science Foundation of China(21103001);Natural science Research Project of Anhui Higher Education, China(KJ2017A033)
Corresponding Authors: Jin SUN     E-mail: sunjin@ahu.edu.cn
Cite this article:

Jin SUN,Zong-Ling DING,Yuan-Qin YU,Guang LI. Absorption Spectra of Azobenzene Molecules on Au Nanoparticle Surface. Acta Phys. -Chim. Sin., 2017, 33(11): 2199-2206.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705226     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I11/2199

Fig 1 Contour of a surface localized field generated by an Au nanoparticle sphere with R = 5 nm. The arrow denotes the field polarization direction of E0. The magnitude of the field intensity E is indicated by the colour scale. The obervation point 'O' is set in the x-axis and is away from the NP surface, at a distance of l. color online.
Fig 2 The real and imaginary parts of λxx and λyy with the radius of Au NP sphere R = 5 nm. The observation point 'O' is set in the x-axis and is away from the NP surface at a distance of l = 0.5, 1, 3 nm.
Fig 3 The real and imaginary parts of λxx and λyy with the radius of Ag NP sphere R = 3, 5 nm.
Fig 4 (A) The absorption spectra of cis azobenzene molecule and Au-cis system; (B) the absorption spectra of trans azobenzene molecule and Au-trans system. The radius of Au NP sphere is R = 5 nm, and the distance between azobenzene and NP surface is l = 1 nm.
Fig 5 The absorption spectra of Au-cis (A) and Au-trans (B) systems with different distance, respectively. The radius of Au NP sphere is R = 5 nm and the distance between the molecule and NP surface is l = 0.5, 1, 3 nm.
Fig 6 The absorption spectra of Au-cis (A) and Au-trans (B) systems with different radius of NP sphere, respectively. The radius of sphere is R = 3, 5 nm and the distance between the molecule and NP is l = 1 nm.
1 Browne W. R. ; Feringa B. L. Annu. Rev. Phys. Chem. 2009, 60, 407.
2 Balzani V. ; Credi A. ; Venturi M. Chem. Phys. Chem. 2008, 9, 202.
3 Ulman A. Chem. Rev. 1996, 96, 1533.
4 Schreiber F. Prog. Surf. Sci. 2000, 65, 151.
5 Love J. C. ; Estroff L. A. ; Kriebel J. K. ; Nuzzo R. G. ; Whitesides G. M. Chem. Rev. 2005, 105, 1103.
6 Hamelmann F. ; Heinzmann U. ; Siemeling U. ; Bretthauer F. ; Vorder Brüggen J. Appl. Surf. Sci. 2004, 222, 1.
7 Hartley G. S. J. Chem. Soc. 1938, 633
8 Müller M. ; Jung U. ; Gusak V. ; Ulrich S. ; Holz M. ; Herges R. ; Langhammer C. ; Magnussen O. Langmuir 2013, 29, 10693.
9 Saukar U. K. ; Debnath D. K. ; Hossain W J. Mol. Struct. 2014, 1061, 104.
10 Boom K. ; Müller M. ; Stein F. ; Ernst S. ; Morgenstern K. J. Phys. Chem. C 2015, 119, 17718.
11 Zhao L. B. ; Huang. Y. F. ; Liu X. M. ; Anema J. R. ; Wu D. Y. ; Ren B. ; Tian Z. Q. Phys. Chem. Chem. Phys. 2012, 14, 12919.
12 Song H. ; Jing C. ; Ma W. ; Xie T. ; Long Y. T. Chem. Commun. 2016, 52, 2984.
13 Jung U. ; Schütt C. ; Filinova O. ; Kubitschke J. ; Herges R. J. Phys. Chem. C 2012, 116, 25943.
14 Joshi G. K. ; Blodgett K. N. ; Muhoberac B. B. ; Johnson M. A. ; Smith K. A. ; Sardar R. Nano Lett. 2014, 14, 532.
15 Jung U. ; Filinova O. ; Kuhn S. ; Zargarani D. ; Bornholdt C. ; Herges R. ; Magnussen O. Langmuir 2010, 26, 139133.
16 Zhang G. P. Phys. Rev. Lett. 2005, 95, 047401.
17 Gordon A. ; Kartner F. X. ; Rohringer N. ; Santra R. Phys. Rev. Lett. 2006, 96, 223902.
18 Onida G. ; Reining L. ; Rubio A. Rev. Mod. Phys. 2002, 74, 601.
19 Suzuki M. ; Mukamel S. J. Chem. Phys. 2003, 119, 4722.
20 Sun J. ; Song J. ; Zhao Y. ; Liang W. Z. J. Chem. Phys. 2007, 127, 234107.
21 Sun J. ; Guo Z. Y. ; Liang W. Z. Phys. Rev. B 2007, 75, 195438.
22 Sun J. ; Liang W. Z. ; Liu J. J. Theo. Comp. Chem. 2008, 7, 579.
23 Sun J. ; Liu J. ; Liang W. Z. ; Zhao Y. J. Phys. Chem. A. 2008, 112, 10442.
24 Sun J. ; Liang W. Z. Acta Phys. -Chim. Sin. 2014, 30, 439.
24 孙进; 梁万珍. 物理化学学报, 2014, 30, 439.
25 Sun J. ; Li G. ; Liang W. Z. Phys. Chem. Chem. Phys. 2015, 17, 16835.
26 Press W. H. ; Teukolsky S. A. ; Vetterling W. T. ; Flannery B. P. Numerical Recipes in Fortran 90 Cambridge University Press: Cambridge, 1996.
27 Chen H. ; McMahon J. M. ; Ratner M. A. ; Schatz G. C. J. Phys. Chem. C 2010, 114, 14384.
28 McMahon J. M. ; Wang Y. ; Sherry L. J. ; Van Duyne R. P. ; Marks L. D. ; Gray S. K. ; Schatz G. C J. Phys. Chem. C 2009, 113, 2731.
29 McMahon J. M. ; Henzie J. ; Odom T. W. ; Schatz G. C. ; Gray S. K. Optics Express 2007, 15, 18119.
30 Shao Y. ; Molnar L. F. ; Jung Y. ; Kussmann J. ; Ochsenfeld C. ; Brown S. T. ; Gilbert A. T. B. ; Slipchenko L. V. ; Levchenko S. V. ; O'Neill D. P. ; DiStasio R. A. ; Lochan R. C. ; Wang T. ; Beran G. J.O. ; Besley N. A. ; Herbert J. M. ; Lin C. Y. ; Van Voorhis T. ; Chien S. H. ; Sodt A. ; Steele R. P. ; Rassolov V. A. ; Maslen P. E. ; Korambath P. P. ; Adamson R. D. ; Austin B. ; Baker J. ; Byrd E. F.C. ; Dachsel H. ; Doerksen R. J. ; Dreuw A. ; Dunietz B. D. ; Dutoi A. D. ; Furlani T. R. ; Gwaltney S. R. ; Heyden A. ; Hirata S. ; Hsu C.P. ; Kedziora G. ; Khalliulin R.Z. ; Klunzinger P. ; Lee A. M. ; Lee M. S. ; Liang W. ; Lotan I. ; Nair N. ; Peters B. ; Proynov E. I. ; Pieniazek P. A. ; Rhee Y. M. ; Ritchie J. ; Rosta E. ; Sherrill C. D. ; Simmonett A. C. ; Subotnik J. E. ; Woodcock H. L. ; Zhang W. ; Bell A. T. ; Chakraborty A. K. ; Chipman D.M. ; Keil F. J. ; Warshel A. ; Hehre W. J. ; Schaefer H. F. ; Kong J. ; Krylov A. I. ; Gill P. M. W. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2006, 8, 3172.
31 Song H. ; Jing C. ; Ma W. ; Xie T. ; Long Y. T. Chem. Commun. 2016, 52, 2984.
32 Zhang W. ; Govorov A. O. ; Bryant G. W. Phys. Rev. Lett. 2006, 97, 146804.
33 Kroner M. ; Govorov A. O. ; Remi S. ; Biedermann B. ; Seidl S. ; Badolato A. ; Petroff P. M. ; Zhang W. ; Barbour R. ; Gerardot B. D. ; Warburton R. J. ; Karrai K. Nature 2008, 451, 311.
[1] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[2] Gang LEI,Yan HE. Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 11-21.
[3] Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229.
[4] Zhi-Bo FAN,Xiao-Qing GONG,Dan-Feng LU,Ran GAO,Zhi-Mei QI. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1001-1009.
[5] Hong-Lai LIU,Wan-Luo WANG,Shou-Hong XU,Hong-Lai LIU. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 836-844.
[6] Qian ZHU,Chao-Tun CAO,Chen-Zhong CAO. Extension and Application of Excited-State Constants of meta-Substituents[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 729-735.
[7] Hao HUANG,Ran LONG,Yu-Jie XIONG. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 661-669.
[8] Xiao-Yu CHEN,Jing-Dong WANG,An-Chi YU. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2184-2190.
[9] Ying-Chun JIN,Xu-Ming ZHENG. UV Absorption and Resonance Raman Spectra of 2, 4-Dithiouracil[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1989-1997.
[10] Hua-Bin CHEN,Xiao-Hui ZHANG,Li-Zhen GONG,Jing HE,Xuan XU,Zhi-Guang XU,Hai-Yang LIU. Effect of β-Substituents on the Electronic Absorption Spectra of Manganese(Ⅴ)-oxo Corrole Complexes[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1983-1989.
[11] Hai-Feng YIN. Plasmon Excitations in Silicene Quantum Dot Dimers[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1446-1452.
[12] Li-Mei. HOU,Zhi. WEN,Yin-Xiang. LI,Hua-You. HU,Yu-He. KAN,Zhong-Min. SU. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1504-1512.
[13] Xi. HE,Tong-Dan. TANG,Jun. YI,Bi-Ju. LIU,Fang-Fang. WANG,Bin. REN,Jian-Zhang. ZHOU. Spherical Au@Ag Nanoparticles for Localized Surface Plasmon Resonance Scanning Probes: Synthesis and Dielectric Sensitivity[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1575-1583.
[14] Chen. CHEN,Dan-Feng. LU,Jin. CHENG,Zhi-Mei. QI. Simulation of Surface Plasmon Coupled Emission with Silver Film[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2023-2028.
[15] YIN Hai-Feng, XIANG Gong-Zhou, YUE Li, ZHANG Hong. Plasmon Excitation in Silicene Quantum Dots[J]. Acta Phys. -Chim. Sin., 2015, 31(1): 67-72.