Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (3): 270-277    DOI: 10.3866/PKU.WHXB201707071
    
DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules
Yueqi YIN,Mengxu JIANG,Chunguang LIU*()
Download: HTML     PDF(984KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Molecular geometries, electronic structure, and infrared spectroscopy of a series of polyoxometalate (POM)-supported single atom catalyst (SACs) (M1/POM (M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) have been studied based on density factional theory (DFT) combined with natural bond orbital (NBO) analysis method. The results show that Pt1/POM has a higher reactivity for activation of N2 relevant to the others. The interaction between the isolated Pt atom and N2 arises from an orbital mixture, which is formed by the dxz and dyz orbital of Pt atom and the π* anti-bond orbit of N2 molecule. The electron transfer from Pt atom to the nitrogen molecule leads to a weakened N≡N bond. The N≡N bond distance increases when compared with the free N2 molecule. All results indicate an effective activation of the nitrogen molecules. For DFT-derived IR spectra, the four characteristic peaks of Keggin-type POM split into five because of introduction of the isolated metal atom.



Key wordsSingle atom catalyst      Artificial nitrogen fixation      Density functional theory      Electronic structure      Infrared spectroscopy     
Received: 22 May 2017      Published: 07 July 2017
O641  
Fund:  the Natural Science Foundation of China(21373043)
Corresponding Authors: Chunguang LIU     E-mail: liucg407@163.com
Cite this article:

Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707071     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I3/270

Fig 1 The chatt cycle for nitrogen fixation on a mononuclear molybdenum-phosphine complex.
Fig 2 Molecular structure of M1/POM and nitrogen-metal complex and average bond length (avM-O, nm).
Parameter Ni-POM Pd-POM Pt-POM Cu-POM Ag-POM Au-POM
geometric parameters
M-N 0.2802 0.1939 0.1836 0.1852 0.2253 0.2038
WBI(M-N) 0.0048 0.6313 0.9159 0.5184 0.2626 0.4810
N-N 0.1113 0.1134 0.1139 0.1123 0.1122 0.1128
WBI(N-N) 2.9699 2.6480 2.5282 2.7595 2.8245 2.7043
∠O-M-O 172 101 74 127 111 105
Ead -14.06 -126.61 -239.16 -97.65 -42.22 -14.06
partial charges
Q(M) 1.184 0.237 0.104 0.719 0.690 0.582
Q(N1) 0.009 -0.125 -0.091 -0.093 -0.102 -0.138
Q(N2) 0.009 -0.084 -0.106 0.01 0.013 0.017
Q(N2) 0.018 -0.209 -0.197 -0.083 -0.089 -0.121
Table 1 DFT-M06L-derived adsorption energy (Ead, kJ·mol-1), bond length (nm), angle of metal atom and two oxygen atoms (∠O-M-O, °), WBI bond order (WBI) and NBO partial charge (Q, a.u.) in M1/POM (M = Ni, Pd, Pt, Cu, Ag, Au).
Fig 3 Frontier molecular orbitals of the Pt-nitrogen POM complex.
Model [PW12O40]3- Pd1/POM Pt1/POM Cu1/POM
expt calcd before after before after before after
ν1(P-Oa) 1080 1080 1072 1074 1076 1074 1064 1063
ν2(W=Ot) 987 976 973 976 976 978 972 973
ν3(W-Ob-W) 890 901 883 899 894 894 894 893
ν4(W-Oc-W) 802 828 811 818 825 828 825 830
ν5(M-O) - - 754 796 767 793 763 758
ν6(N≡N) - - - 2202 - 2194 - 2299
Table 2 Calculated and experimental vibrational frequencies (in cm-1) and the assigned bands of the series of POM complexes studied here.
1 Burris R. H. J. Biol. Chem. 1991, 266, 9339.
2 Shah V. K. ; Brill W. J. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3249.
3 Chakrabarti P. ; Woo D. ; Kornuc J. J. ; Rees D. C. Science 1992, 257, 1653.
4 Kirn J. ; Rees D. C. Nature 1992, 360, 553.
5 Kirn J. ; Rees D. C. Science 1992, 257, 1677.
6 Chan M. K. ; Kirn J. ; Rees D. C. Science 1993, 260, 792.
7 Kirn J. ; Woo D. ; Rees D. C. Biochemistry 1993, 32, 7104.
8 Kirn J. ; Rees D. C. Biochemistry 1994, 33, 389.
9 Jia H. P. ; Quadrelli E. A. Chem. Soc. Rev. 2014, 43, 547.
10 MacKay B. A. ; Fryzuk M. D. Chem. Rev. 2004, 104, 385.
11 Yandulov D. V. ; Schrock R. R. Science 2003, 301, 76.
12 Arashiba K. ; Miyake Y. ; Nishibayashi Y. Nat. Chem. 2011, 3, 120.
13 Anderson J. S. ; Rittle J. ; Peters J. C. Nature 2013, 501, 84.
14 Allen A. D. ; Harris R. O. ; Loescher B. R. ; Stevens J. R. ; Whiteley R. N. Chem. Rev. 1973, 73, 11.
15 Hoffman B. M. ; Lukoyanov D. ; Yang Z. Y. ; Dean D. R. ; Seefeldt L. C. Chem. Rev. 2014, 114, 4041.
16 Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
17 Yang X. F. ; Wang A. ; Qiao B. ; Li J. ; Liu J. ; Zhang T. Acc. Chem. Res. 2013, 46, 1740.
18 Thomas J. M. Nature 2015, 525, 325.
19 Liu J. ACS Catal. 2017, 7, 34.
20 Wei H. ; Liu X. Y. ; Wang A. ; Zhang L. ; Qiao B. T. ; Yang Y. F. ; Huang Y. Q. ; Miao S. ; Liu J. ; Zhang T. Nat. Commun. 2013, 5, 5634.
21 Liu P. ; Zhao Y. ; Qin R. ; Mo S. ; Chen G. ; Gu L. ; Chevrier D. M. ; Zhang P. ; Guo Q. ; Zang D. ; Wu B. ; Fu G. ; Zheng N. Science 2016, 352, 797.
22 Katsoulis D. E. Chem. Rev. 1998, 98, 359.
23 Dolbecq A. ; Dumas E. ; Mayer C. R. ; Mialane P. Chem. Rev. 2010, 110, 6009.
24 Hill C. L. Chem. Rev. 1998, 98, 1.
25 Izarova N. V. ; Pope M. T. ; Kortz U. Angew.Chem.Int. Ed. 2012, 51, 2.
26 Dablemont C. ; Hamaker C. G. ; Thouvenot R. ; Sojka Z. ; Che M. ; Maatta E. A. ; Proust A. Chem. -Eur J. 2006, 12, 9150.
27 Besson C. ; Musaev D. G. ; Lahootun V. ; Cao R. ; Chamoreau L. M. ; Villanneau R. ; Villain F. ; Thouvenot R. ; Geletii Y. V. ; Hill C. L. ; Proust A. Chem. Eur. J. 2009, 15, 10233.
28 Lahootun V. ; Besson C. ; Villanneau R. ; Villain F. ; Chamoreau L. M. ; Boubekeur K. ; Blanchard S. ; Thouvenot R. ; Proust A. J. Am. Chem. Soc. 2007, 129, 7127.
29 Sokolov M. N. ; Adonin S. A. ; Mainichev D. A. ; Sinkevich P. L. ; Vicent C. ; Kompankov N. B. ; Gushchin A. L. ; Nadolinny V. A. ; Fedin V. P. Inorg. Chem. 2013, 52, 9675.
30 Liu C. G. ; Liu S. ; Zheng T. Inorg. Chem. 2015, 54, 7929.
31 Coperet C. ; Comas-Vives A. ; Conley M. P. ; Estes D. P. ; Fedorov A. ; Mougel V. ; Nagae H. ; Nunez-Zarur F. ; Zhizhko P. A. Chem. Rev. 2016, 116, 323.
32 Zhang B. ; Asakura H. ; Zhang J. ; Zhang J. ; De S. ; Yan N. Angew. Chem. Int. Ed. 2016, 55, 8319.
33 Zhang B. ; Asakura H. ; Yan N. Ind. Eng. Chem. Res. 2017, 56, 3578.
34 Zhao Y. ; Truhlar D. G. J.Chem. Phys. 2006, 125, 194101.
35 Hay P. J. ; Wadt W. R. J.Chem. Phys. 1985, 82, 270.
36 Hay P. J. ; Wadt W. R. J. Chem. Phys. 1985, 82, 299.
37 Tomasi J. ; Mennucci B. ; Cammi R. Chem. Rev. 2005, 105, 2999.
38 GlendeningA. E.;CarpenterJ. E.;WeinholdF.NBO;Version 3.1.
39 FrischM. J.;TrucksG. W.;SchlegelH. B.et al.Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT,2009.
40 Zhang B. ; Asakura H. ; Zhang J. ; Zhang I. ; De S. ; Yan N. Angew. Chem. Int. Ed. 2016, 55, 1.
[1] Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75.
[2] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[3] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[4] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[5] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[6] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[12] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[13] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[14] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[15] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.