Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (3): 256-262    DOI: 10.3866/PKU.WHXB201708071
    
Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28
Fanhua YIN,Kai TAN*()
Download: HTML     PDF(1103KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A new isolated-pentagon-rule (IPR) C100(417)Cl28 has been captured, but its formation mechanism is still unclear. Herein we have used density functional theory (DFT) to study the possible reaction pathways, including Stone-Wales (SW) transformation, direct chlorination, and skeletal transformation for C100(417). The calculated results show that the major source of C100(417) is the skeletal transformation of C102(603), including chloride formation, C2 elimination, and SW transformation. The results satisfactorily explained the experimental observations, and provide useful guidance for the synthesis of fullerene chlorides.



Key wordsDensity functional theory      Fullerene chloride      Skeletal transformation     
Received: 28 June 2017      Published: 07 August 2017
O641  
Fund:  the National Natural Science Foundation of China(21573182)
Corresponding Authors: Kai TAN     E-mail: ktan@xmu.edu.cn
Cite this article:

Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201708071     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I3/256

Fig 1 (a) Skeletal transformation of C100(417); (b) four possible routes to C100(417)Cl28; (c) reconstruction of a skeletal transformation of C100(445) into C100(417) via C100(419). The pentagons and hexagons near the rotated C―C bond are shown in green and red, respectively. color online.
Rank FM:Sym Er Egap Rank FM:Sym Er Egap
1 449:D2 0.00 1.20 19 321:T 31.47 0.80
2 425:C1 2.93 1.32 20 441:C1 31.58 0.74
3 442:C2 5.72 1.20 21 383:C1 32.35 1.32
4 173:C1 9.74 1.09 22 216:C1 32.63 1.42
5 440:C2 10.83 1.19 23 424:C1 33.03 1.33
6 426:C1 17.40 1.30 24 432:D2 33.04 1.43
7 448:C2 18.30 1.01 25 357:C1 33.73 0.92
8 382:C1 19.41 1.35 26 445:D2 33.89 1.53
9 253:C1 22.54 0.99 27 414:Cs 35.86 1.26
10 95:C1 22.54 1.39 28 254:C1 35.88 0.98
11 427:C1 24.41 1.05 29 71:C1 36.06 1.28
12 384:C1 24.88 1.28 30 412:C1 36.94 1.07
13 248:C1 28.45 1.14 31 431:D2 37.19 1.46
14 303:C1 28.63 1.33 32 344:C1 37.47 1.29
15 232:C1 30.58 1.34 33 260:C1 37.86 1.01
16 174:C2 30.83 0.86 34 323:C1 38.47 1.00
17 18:C2 30.95 1.87 73 419:C1 55.87 1.74
18 380:C1 31.31 1.05 126 417:C2v 71.97 1.85
Table 1 Relative energies (Er in kJ·mol-1) of the C100 IPR fullerene isomers and HOMO-LUMO gap (Egap in eV).
Fig 2 Dependence of relative concentration of the seven isomers of C100 on temperature.
Fig 3 Reconstruction of a skeletal transformation of C100(445)Cl28 into C100(417)Cl28 via C100(419)Cl28. The activated energy barriers (in kJ·mol-1) are given, the length of C―C is in unit of nm.
Fig 4 Reaction pathway of C98(NC) and C2 to C100(417). Energies are given in kJ·mol-1.
Fig 5 The SW transformation between C102(NC) to C102(603). Energy barrier are given in kJ·mol-1. The energy barrier from C102(603)Cl18 to C102(NC)Cl18 (brackets).
Fig 6 The free energy-reaction coordination scheme of C102(NC) and C2 to C100(417). Energies are given in kJ·mol-1.
1 Xie S. Y. ; Gao F. ; Lu X. ; Huang R. B. ; Wang C. R. ; Zhang X. ; Liu M. L. ; Deng S. L. ; Zheng L. S. Science 2004, 304, 699.
2 Tan Y. Z. ; Xie S. Y. ; Huang R. B. ; Zheng L. S. Nat. Chem. 2009, 1, 450.
3 Wang S. ; Yang S. ; Kemnitz E. ; Troyanov S. I. Inorg. Chem. 2016, 55, 5741.
4 Troyanov S. I. ; Yang S. ; Chen C. ; Kemnitz E. Chem. Eur. J. 2011, 17, 10662.
5 Yang S. ; Wei T. ; Kemnitz E. ; Troyanov S. I. Angew. Chem. Int. Ed. 2012, 124, 8364.
6 Stone A. ; Wales D. Chem. Phys. Lett. 1986, 128, 501.
7 Ioffe I. N. ; Mazaleva O. N. ; Chen C. ; Yang S. ; Kemnitz E. ; Troyanov S. I. Dalton. Trans. 2011, 40, 11005.
8 Ioffe I. N. ; Goryunkov A. A. ; Tamm N. B. ; Sidorov L. N. ; Kemnitz E. ; Troyanov S. I. Angew. Chem. Int. Ed. 2009, 48, 5904.
9 Ioffe I. N. ; Mazaleva O. N. ; Sidorov L. N. ; Yang S. ; Wei T. ; Kemnitz E. ; Troyanov S. I. Inorg. Chem. 2012, 51, 11226.
10 Yang S. ; Wei T. ; Wang S. ; Ignat'eva D. V. ; Kemnitz E. ; Troyanov S. I. Chem. Commun. 2013, 49, 7944.
11 Ioffe I. N. ; Mazaleva O. N. ; Sidorov L. N. ; Yang S. ; Wei T. ; Kemnitz E. ; Troyanov S. I. Inorg. Chem. 2013, 52, 13821.
12 Wang S. ; Yang S. ; Kemnitz E. ; Troyanov S. I. Angew. Chem. Int. Ed. 2016, 55, 3235.
13 Zhao X. ; Goto H. ; Slanina Z. Chem. Phys. 2004, 306, 93.
14 Cai W. ; Xu L. ; Shao N. ; Shao X. ; Guo Q. J. Chem. Phys. 2005, 122, 184318.
15 Hao Y. ; Tang Q. ; Li X. ; Zhang M. ; Wan Y. ; Feng L. ; Chen N. ; Slanina Z. K. ; Adamowicz L. ; Uhlík F. Inorg. Chem. 2016, 55, 11354.
16 Chen C. H. ; Abella L. ; Cerón M. R. ; Guerrero-Ayala M. A. ; Rodríguez-Fortea A. ; Olmstead M. M. ; Powers X. B. ; Balch A. L. ; Poblet J. M. ; Echegoyen L. J. Am. Chem. Soc. 2016, 138, 13030.
17 Cai W. ; Li F. F. ; Bao L. ; Xie Y. ; Lu X. J. Am. Chem. Soc. 2016, 138, 6670.
18 Yang S. ; Wang S. ; Kemnitz E. ; Troyanov S. I. Angew. Chem. Int. Ed. 2014, 53, 2460.
19 Yang S. ; Wei T. ; Scheurell K. ; Kemnitz E. ; Troyanov S. I. Chem. Eur. J. 2015, 21, 15138.
20 Jin F. ; Yang S. ; Kemnitz E. ; Trojanov S. I. J. Am. Chem. Soc. 2017, 139, 4651.
21 Fowler P. DE Manolopoulos An atlas of Fullerenes Oxford, UK: Oxford University Press, 1995.
22 Becke A. D. J. Chem. Phys. 1993, 98, 5648.
23 Gonzalez C. Schlegel H. B. J. Chem. Phys. 1989, 90, 2154.
24 FrischM.;TrucksG.;SchlegelH.et al.Gaussian 09, Revision A. 1.;Gaussian, Inc:Wallingford, CT,2009.
25 Yoshida M. ; Gotō H. ; Hirose Y. ; Zhao X. ; ōsawa E. J. Theo. Chem. 1996, 1, 163.
26 Shao N. ; Gao Y. ; Yoo S. ; An W. ; Zeng X. C. J. Phys. Chem. C 2006, 110, 7672.
27 Slanina Z. ; Lee S. L. ; Uhlík F. ; Adamowicz L. ; Nagase S. Theor. Chem. Acc. 2007, 117, 315.
28 Bettinger H. F. ; Yakobson B. I. ; Scuseria G. E. J. Am. Chem. Soc. 2003, 125, 5572.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[6] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[7] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[8] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[9] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[10] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[11] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[12] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[13] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[14] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[15] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.