Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (3): 263-269    DOI: 10.3866/PKU.WHXB201708173
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
    
Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-
Robert C MORRISON*()
Download: HTML     PDF(514KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this work, the Fukui functions of the two 2P resonance states of Be-, a 2P resonance state of Mg-, and a 2D resonance state of Ca- have been determined. The trajectories of these resonance states, in conjunction with the complex rotation of the Hamiltonian, were used to determine their wave functions. The electron densities, Fukui functions, and values of the hyper-radius < r2 > were computed from these wave functions. The Fukui functions have negative regions in the valence shell in addition to the inner shell regions, indicating screening effects of the outer temporary electron. Selected configuration interactions with up to quadruple excitations were used along the trajectories and for computing the final wave function. Based on this data, the densities, Fukui functions, and < r2 > were calculated.



Key wordsFukui functions      Density functional theory      Temporary anion states      Resonance states      Complex rotation     
Received: 27 June 2017      Published: 17 August 2017
Corresponding Authors: Robert C MORRISON     E-mail: morrisonr@ecu.edu
Cite this article:

Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201708173     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I3/263

 
 
 
Be (2P) resonance 1 Er Γr < r2 >
CMSCF (CAS)a 0.30 0.47
CMCSTEPb 0.96 0.36
stabilizationc 0.33 0.40
present (complex rotation) 0.27 0.08 680
present (stabilization) 0.21 1215
Be (2P) resonance 2
CMCSCF (CAS)a 0.72 1.53
present (complex rotation) 0.84 0.38 6300
present (stabilization) 0.59 5449
Mg (2P)
CMCSTEPb 0.19 0.13
stabilizationc 0.22 0.24
present (complex rotation) 0.24 0.1 283
experiment d 0.15 0.14
Ca (2D)
CMCSTEPb 1.16 0.62
stabilizationc 1.32 0.97
present (complex rotation) 0.50 0.40 498
experiment e 1.1 0.5
 
 
I(f+) I(fαα+) I(fβα+)
Be―Be- resonance 1 -0.456 -0.228 -0.229
Be―Be- resonance 2 -0.620 -0.310 -0.310
Mg―Mg- -0.058 -0.029 -0.031
Ca―Ca- -0.100 -0.050 -0.050
B―B- -0.0031 -0.0015 -0.058
Al―Al- -0.0157 -0.0026 -0.031
 
 
 
 
1 Cau?t E. ; Bogatko S. ; Liévin J. De Proft F. ; Geerlings P. J. Phys. Chem. 2013, 117, 9669.
2 Aflatooni K. ; Gallup G. A. ; Burrow P. D. J. Phys. Chem. A 1998, 102, 6205.
3 Tozer D. J. ; De Proft F. J. Chem. Phys. 2007, 127, 034108.
4 Jordan K. D. ; Voora V. K. ; Simons J. Theor. Chem. Acc. 2014, 133, 1445.
5 Falcetta M. F. ; DiFalco L. A. ; Ackerman D. S. ; Barlow J. C. ; Jordan K. D. J. Phys. Chem. A 2014, 118, 7489.
6 Macias A. ; Riera A. J. Chem. Phys. 1992, 96, 2877.
7 Riera A. J. Phys. Chem. 1993, 97, 1558.
8 Riera A. J. Mol. Struc. 1993, 284, 175.
9 Moiseyev N. Physics Reports 1998, 302, 212.
10 Doolen G. D. J. Phys. B: At. Mol. Opt. Phys. 1975, 8, 525.
11 Moiseyev N. ; Certain P. R. ; Weinhold F. Mol. Phys. 1978, 36, 1613.
12 Mishra M. ; Goscinski O. ; ?hrn Y. J. Chem. Phys. 1983, 79, 5494.
13 Moiseyev N. ; Friedland S. ; Certain P. R. J. Chem. Phys. 1981, 74, 4739.
14 Br?ndas E. ; Elander N. Lecture Notes in Physics 1989, 325, 541.
15 Ried C. E. ; Br?ndas E. Lecture Notes in Physics 1989, 325, 475.
16 Riss U. V. ; Meyer H. D. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, 4503.
17 Jagau T. C. ; Zuev D. ; Bravaya K. B. ; Epifanovsky E. ; Krylov A. I. J. Phys. Chem. Lett. 2014, 5, 310.
18 Jagau T. C. ; Krylov A. I. J. Chem. Phys. 2016, 144, 054113.
19 ParrR.;YangW.Density-Functional Theory of Atoms and Molecules;New York:Oxford Science Publications1989.
20 Ayers P. W. ; Levy M. Theor. Chem. Acc. 2000, 103, 353.
21 Chatteraj P. K. Chemical Reactivity Theory Boca Roton: CRC Press, 2009.
22 Parr R. G. ; Yang W. J. Am. Chem. Soc. 1984, 106, 4049.
23 Perdew J. P. ; Parr R. G. ; Levy M. ; Balduz J. L. ; Jr. Phys. Rev. Lett. 1982, 49, 1691.
24 Galván M. ; Vela A. ; Gazquez J. L. J. Phys. Chem. 1988, 92, 6470.
25 Garza J. ; Vargas R. ; Cedillo A. ; Galván M. ; Chattaraj P. K. Theor. Chem. Acc. 2006, 115, 257.
26 Ayers P. W. ; Morrison R. C. ; Roy R. K. J. Chem. Phys. 2002, 116, 8731.
27 Bunge C. F. Mol. Phys. 2010, 108, 3279.
28 Bunge C. F. J. Chem. Phys. 2006, 125, 014107.
29 Bunge C. F. Theor. Chem. Acc. 2010, 126, 139.
30 Almora-Diaz C. X. ; Bunge C. F. Int. J. Quantum Chem. 2010, 110, 2982.
31 LehoucqR.;SorensenD. C.;YangC.ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods;Philadelphia:SIAM1998.
32 Jitrik O. ; Bunge C. F. Phys. Rev. A 1997, 56, 2614.
33 Sajeev Y. Chem. Phys. Lett. 2013, 587, 105.
34 Samanta K. ; Yeager D. L. Adv. Chem. Phys. 2012, 150, 103.
35 Tsogbaya T. ; Yeager D. L. Chem. Phys. 2017, 482, 201.
36 Falcetta M. F. ; Reilly N. D. ; Jordan K. D. Chem. Phys. 2017, 482, 239.
37 Venkatnathan A. ; Mishra M. K. ; Jensen H. J. A. Theor. Chem. Acc 2000, 104, 445.
38 Burrow P. D. ; Michejda J. A. ; Comer J. J. Phys. B: Atom. Mol. Opt. Phys. 1976, 9, 3225.
39 Johnston A. R. ; Gallup G. A. ; Burrow P. D. Phys. Rev. A 1989, 40, 4770.
40 Gallup G. A. ; Burrow P. D. ; Fabrikant I. I. Phys. Rev. A 2009, 79, 042701.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[6] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[7] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[8] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[9] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 81-91.
[10] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[11] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[12] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[13] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[14] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[15] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.