Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (4): 407-413    DOI: 10.3866/PKU.WHXB201708175
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n(n=6,32,64)?
Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
Download:   PDF(2621KB) Export: BibTeX | EndNote (RIS)      


As evidenced from recent literature, interest in employing information theory measures for understanding different properties of atomic and molecular systems is increasing tremendously. Following our earlier efforts in this field, we here evaluate the feasibility of using information theory functionals such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy as measures of steric effects for the steric analysis of water nanoclusters. Taking the structural isomers of water hexamers as working models and using information theoretic quantities, we show that the relative energies of water nanoclusters and the computed steric energies are related. We also show the strong effects of steric repulsion on conformational stabilities. At the same time, we have also assessed the usefulness of simultaneously considering the different information theoretic quantities, and achieved more accurate descriptions of the stability of water nanoclusters. In order to consider the effects of cluster size on the obtained results and the extent of applicability of information theoretic quantities, we have also benchmarked larger water nanoclusters with 32 and 64 units. Scrutinizing the obtained data from information theory functionals, we found that Fisher information shows the best overall performance. Our findings underline that the information theoretic quantities, especially Fisher information, can be used as quantitative measures of relative energies and consequently the order of stability of nanoclusters, which affirmed the utility of information theory for investigating various physical and chemical problems.

Key wordsInformation theory      Fisher information      Shannon entropy      Onicescu information energy      Ghosh-Berkowitz-Parr entropy      Water nanocluster      Steric effect     
Received: 13 July 2017      Published: 17 August 2017
Corresponding Authors: ALIPOUR Mojtaba     E-mail:
Cite this article:

ALIPOUR Mojtaba. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n(n=6,32,64)?. Acta Physico-Chimica Sinca, 2018, 34(4): 407-413.

URL:     OR

(1) Taft, R. W., Jr. Steric Effect in Organic Chemistry; Newman, M. S. Ed.; Wiley: New York, 1956.
(2) Hoffmann, R. J. Mol. Struct. (THEOCHEM) 1998, 1, 424. doi: 10.1016/S0166-1280(97)00219-4
(3) Ayers, P. W. J. Chem. Phys. 2000, 113, 10886. doi: 10.1063/1.1327268
(4) Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
(5) Ayers, P. W. Faraday Discuss. 2007, 135, 161. doi: 10.1039/B606877D
(6) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. doi: 10.1103/PhysRev.136.B864
(7) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133
(8) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford: New York, 1989.
(9) Tsuneda, T. Density Functional Theory in Quantum Chemistry; Springer: New York, 2014.
(10) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
(11) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700
(12) Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008, 129, 094104. doi: 10.1063/1.2976767
(13) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2009, 113, 3698. doi: 10.1021/jp8096583
(14) Tsirelson, V. G.; Stash A. I.; Liu, S. B. J. Chem. Phys. 2010, 133, 114110. doi: 10.1063/1.3492377
(15) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín, J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272
(16) Huang, Y.; Zhong, A.-G.; Yang, Q.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760
(17) Alipour, M.; Mohajeri, A. Mol. Phys. 2012, 110, 2895. doi: 10.1080/00268976.2012.679638
(18) Rincón, L.; Almeida, R. J. Phys. Chem. A 2012, 116, 7523. doi: 10.1021/jp300160g
(19) Alipour, M.; Mohajeri, A. J. Phys. Org. Chem. 2012, 25, 797. doi: 10.1002/poc.2921
(20) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
(21) Rong, C.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
(22) Alipour, M. Chem. Phys. 2014, 434, 11. doi: 10.1016/j.chemphys.2014.02.008
(23) Liu, S. B.; Schauer, C. K. J. Chem. Phys. 2015, 142, 054107. doi: 10.1063/1.4907365
(24) S. B. Liu, J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443
(25) Wu, Z.; Rong, C.; Lu, T.; Ayers, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052. doi: 10.1039/C5CP04442A
(26) Fisher, R. A. Proc. Cambridge Philols. Soc. 1925, 22, 700. doi: 10.1017/S0305004100009580
(27) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
(28) Onicescu, O. C. R. Acad. Sci. Paris A 1966, 263, 25.
(29) Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
(30) Parr, R. G.; Ayers P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
(31) Sen, K. D.; Katriel, J. J. Chem. Phys. 2006, 125, 074117. doi: 10.1063/1.2263710
(32) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
(33) Nagy, Á. Chem. Phys. Lett. 2007, 449, 212. doi: 10.1016/j.cplett.2007.10.026
(34) Borgoo, A.; Geerlings, P.; Sen, K. D. Phys. Lett. A 2008, 372, 5106. doi: 10.1016/j.physleta.2008.05.072
(35) Nagy Á.; Liu, S. B. Phys. Lett. A 2008, 372, 1654. doi: 10.1016/j.physleta.2007.10.055
(36) Angulo, J. C.; Antolín, J. J. Chem. Phys. 2008, 128, 164109. doi: 10.1063/1.2907743
(37) Tsirelson, V. G.; Nagy, Á. J. Phys. Chem. A 2009, 113, 9022. doi: 10.1021/jp904836j
(38) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2010, 490, 242. doi: 10.1016/j.cplett.2010.03.057
(39) Geerlings, P.; Borgoo, A. Phys. Chem. Chem. Phys. 2011, 13, 911. doi: 10.1039/C0CP01046D
(40) Alipour, M. Mol. Phys. 2013, 111, 3246. doi: 10.1080/00268976.2013.777814.
(41) Alipour, M. Chem. Phys. Lett. 2015, 635, 210. doi: 10.1016/j.cplett.2015.06.073
(42) Nagy, Á. Int. J. Quantum Chem. 2015, 115, 1392. doi: 10.1002/qua.24812
(43) Esquivel, R. O.; Molina-Espíritu, M.; López-Rosa, S.; Soriano-Correa, C.; Barrientos-Salcedo, C.; Kohout, M.; Dehesa, J. S. ChemPhysChem 2015, 16, 2571. doi: 10.1002/cphc.201500282
(44) Delle Site, L. Int. J. Quantum Chem. 2015, 115, 1396. doi: 10.1002/qua.24823
(45) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
(46) Alipour, M.; Mohajeri, A. Mol. Phys. 2012, 110, 403. doi: 10.1080/00268976.2011.649795
(47) Liu, S. B. Acta Phys. -Chim. Sin. 2016, 32, 98. doi: 10.3866/PKU.WHXB201510302
(48) Alipour, M.; Safari, Z. Phys. Chem. Chem. Phys. 2016, 18, 17917. doi: 10.1039/C6CP02750D
(49) Wang, Y. J.; Zhao, D. B.; Rong, C. Y.; Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 2173. doi: 10.3866/PKU.WHXB201308272
(50) Alipour, M. Chem. Phys. 2014, 434, 11. doi: 10.1016/j.chemphys.2014.02.008
(51) Frieden, B. R. Physics from Fisher Information; Cambridge University Press: Cambridge, 1998.
(52) Hincapié, G.; Acelas, N.; Castaño, M.; David, J.; Restrepo, A. J. Phys. Chem. A 2010, 114, 7809. doi: 10.1021/jp103683m
(53) Yuan, D.; Li, Y.; Ni, Z.; Pulay, P.; Li, W.; Li, S. J. Chem. Theory Comput. 2017, 13, 2696. doi: 10.1021/acs.jctc.7b00284
(54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al., Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, CT, 2010.
(55) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
(56) Zhou, X. Y.; Rong, C.; Lu, T.; Zhou, P.; Liu, S. B. J. Phys. Chem. A 2016, 120, 3634. doi: 10.1021/acs.jpca.6b01197
(57) Zhou, X.; Yu, D.; Rong, C.; Lu, T.; Liu, S. B. Chem. Phys. Lett. 2017, 684, 97. doi: 10.1021/acs.jpca.6b01197
(58) Maroulis, G. J. Chem. Phys. 2000, 113, 1813. doi: 10.1063/1.481985
(59) Maroulis, G. Int. J. Quantum Chem. 2012, 112, 2231. doi: 10.1002/qua.23186

[1] NALEWAJSKI Roman F. Chemical Reactivity Description in Density-Functional and Information Theories[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2491-2509.
[2] LIU Shu-Bin. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 98-118.
[3] LIU Shu-Bin, RONG Chun-Ying, WU Ze-Min, LU Tian. Rényi Entropy, Tsallis Entropy and Onicescu Information Energy in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinca, 2015, 31(11): 2057-2063.
[4] HU Song-Shuang, ZHANG Lei, XU Zhi-Cheng, GONG Qing-Tao, JIN Zhi-Qiang, ZHANG Lu, ZHAO Sui. Effect of Benzyl-Substituted Alkyl Betaine on the Wettability of a Poly(tetrafluoroethylene) Surface[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1924-1931.
[5] WANG You-Juan, ZHAO Dong-Bo, RONG Chun-Ying, LIU Shu-Bin. Towards Understanding the Origin and Nature of the Conformational Stability of Water Clusters:a Density Functional Theory and Quantum Molecular Dynamics Study[J]. Acta Physico-Chimica Sinca, 2013, 29(10): 2173-2179.
[6] ZHAO Dong-Bo, RONG Chun-Ying, JENKINS Samantha, KIRK Steven R., YIN Du-Lin, LIU Shu-Bin. Origin of the cis-Effect: a Density Functional Theory Study of Doubly Substituted Ethylenes[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 43-54.
[7] WEI Ping, LI Chun-Mei, ZHOU Lu, LIU Ying, LAI Lu-Hua. Substrate Binding and Homo-Dimerization of SARS 3CL Proteinase are Mutual Allosteric Effectors[J]. Acta Physico-Chimica Sinca, 2010, 26(04): 1093-1098.
[8] LIU Shu-Bin. Conceptual Density Functional Theory and Some Recent Developments[J]. Acta Physico-Chimica Sinca, 2009, 25(03): 590-600.
[9] XIONG Hai-Ling; YUAN Yong-Zhi; LI Hang; ZHU Hua-Ling; JIANG Xian-Jun. Computer Simulation of Colloidal Aggregation Induced by Directionalism of Long Range van der Waals Forces[J]. Acta Physico-Chimica Sinca, 2007, 23(08): 1241-1246.