Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (4): 414-423    DOI: 10.3866/PKU.WHXB201708283
Special Issue: Special Issue for Highly Cited Researchers
ARTICLE     
Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity
Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG*()
Download: HTML     PDF(4707KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Au/TiO2/MoS2 plasmonic composite photocatalysts were synthesized via deposition-precipitation with urea. The photocatalytic activities of the prepared samples were evaluated by performing hydrogen production experiments under Xe lamp irradiation with a 10% (φ, volume fraction) glycerol aqueous solution as the sacrificial agent. The results showed that the optimal content of MoS2 in the Au/TiO2/MoS2 composite is 0.1% (w, mass fraction) and the corresponding H2 production rate was 708.85 μmol·h-1, which was almost 11 times higher than that of TM6.0 with the strongest photocatalytic activity in the all binary TiO2/MoS2 composites. The enhanced photocatalytic activity of the ternary Au/TiO2/MoS2 composites is mainly due to the surface plasmon resonance of the supported Au nanoparticles absorbed on the TiO2/MoS2 layered composite, which show an intense absorption maximum centered around 550–560 nm and induce the photoexcitation of electrons. Meanwhile, the electrons excited by surface plasmon resonance of Au could be injected into the conduction band of TiO2, and they were then transferred to the edges of MoS2 for catalyzing the production of H2.



Key wordsTiO2nanosheet      Layered structure      Au nanoparticle      Plasma      Photocatalytic H2 production     
Received: 29 June 2017      Published: 28 August 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21403079);the National Natural Science Foundation of China(51672099);Fundamental Research Funds for the Central Universities, Chin(2662015PY039);Fundamental Research Funds for the Central Universities, Chin(2662015PY210)
Corresponding Authors: Quanjun XIANG     E-mail: xiangqj@mail.hazu.edu.cn
Cite this article:

Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201708283     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/414

Fig 1 XRD patterns of the pure TiO2 and TiO2/MoS2 composites with different content of MoS2. The mass percentages of MoS2 to TiO2 were varied from 0 to 10% (0, 0.5%, 1.0%, 2.0%, 6.0%, 10% (w)) and the resulting samples were labeled as TiO2, TM0.5, TM1.0, TM2.0, TM6.0, TM10.
Fig 2 XRD patterns of the Au/TiO2/MoS2 composites with different content of MoS2. The content of Au was fixed at 2% (w) by varying the loading of MoS2 from 0 to 2.0% (0, 0.1%, 0.5%, 1.0%, 2.0% (w)) and the resulting Au/TiO2/MoS2 composites were labeled as AT, ATM0.1, ATM0.5, ATM1.0, ATM2.0.
Fig 3 TEM and HRTEM images of the as-prepared TM6.0 and ATM0.1 samples. TEM: (a) TM6.0, (b) ATM0.1; HRTEM: (c) TM6.0, (d) ATM0.1.
Fig 4 SEM (a, b) and EDX (c–h) images of ATM1.0 sample.
Fig 5 Survey XPS spectrum of ATM1.0 sample. The inset shows a high resolution spectrum of Au 4f.
Fig 6 High resolution XPS spectra of Mo 3d-S 2s of ATM1.0 sample.
Fig 7 UV-Vis diffuse reflection spectra of the pure TiO2 and TiO2/MoS2 composites with different amount of MoS2.
Fig 8 UV-Vis diffuse reflection spectra of the pure TiO2 and Au/TiO2/MoS2 composites with different amount of MoS2.
Fig 9 Photocatalytic hydrogen evolution of the pure TiO2 and TiO2/MoS2 composites.
Fig 10 Photocatalytic hydrogen evolution of the TM6.0 and Au/TiO2/MoS2 composites.
Fig 11 Proposed mechanism for photocatalytic H2 production of ATM0.1 sample.
Fig 12 Schematic illustration of the microstructure of the ATM0.1 sample.
Fig 13 Cyclic H2 evolution curve for the ATM0.1 sample.
Fig 14 Transient photocurrent responses of the AT, ATM0.1, ATM0.5 and ATM1.0 samples. Conditions: 0.5 mol·L-1 Na2SO4 aqueous solution under xenon lamp, irradiation at 0.5 V (vs Ag/AgCl).
Fig 15 Nyquist plots of the AT, ATM0.1, ATM0.5 and ATM1.0 samples in 0.5 mol·L-1 Na2SO4 aqueous solution under xenon lamp irradiation.
1 Xiang Q. J. ; Cheng B. ; Yu J. G. Angew.Chem. Int. Ed. 2015, 54, 11350.
2 Armaroli N. ; Balzani V. ChemSusChem 2011, 4, 21.
3 Sakintuna B. ; Lamaridarkrim F. ; Hirscher M. Int. J. Hydrog. Energy 2007, 32, 1121.
4 Ni M. ; Leung D. Y. C. ; Leung M. K. H. Int. J. Hydrog. Energy 2007, 32, 3238.
5 Balat M. Int. J. Hydrog. Energy 2008, 33, 4013.
6 Muradov N. ; Veziroglu T. Int. J. Hydrog. Energy 2008, 33, 6804.
7 Navarro R. M. ; Pena M. A. ; Fierro J. L. Chem. Rev. 2007, 107, 3952.
8 Li X. ; Yu J. G. ; Wageh S. ; Al-Ghamdi A. A. ; Xie J. Small 2016, 12, 6640.
9 Yu J. G. ; Qi L. F. ; Jaroniec M. J. Phys. Chem. C 2010, 114, 13118.
10 Xiang Q. J. ; Lang D. ; Shen T. T. ; Liu F. Appl. Catal. B: Environ. 2015, 162, 196.
11 Xiang Q. J. ; Cheng F. Y. ; Lang D. ChemSusChem 2016, 9, 996.
12 Wang X. F. ; Cheng J. J. ; Yu H. G. ; Yu J. G. Dalton. Trans. 2017, 46, 6417.
13 Xiang Q. J. ; Lv K. ; Yu J. G. Appl. Catal. B: Environ. 2010, 96, 557.
14 Chen X. B. ; Burda C. J. Am. Chem. Soc. 2008, 130, 5018.
15 Venieri D. ; Gounaki I. ; Binas V. ; Zachopoulos A. ; Kiriakidis G. ; Mantzavinos D. Appl. Catal. B: Environ. 2015, 178, 54.
16 Wang X. F. ; Li T. Y. ; Yu R. ; Yu H. G. ; Yu J. G. J. Mater. Chem. A 2016, 4, 8682.
17 Li G. ; Chen M. Q. ; Zhao S. X. ; Li P. W. ; Hu J. ; Sang S. B. ; Hou J. J. Acta Phys. -Chim. Sin. 2016, 32, 2905.
17 李刚; 陈敏强; 赵世雄; 李朋伟; 胡杰; 桑胜波; 候静静. 物理化学学报, 2016, 32, 2905.
18 Bouhadoun S. ; Guillard C. ; Dapozze F. ; Singh S. ; Amans D. ; BoucléJ. ; Herlin-Boime N. Appl. Catal. B: Environ. 2015, 174, 367.
19 Ksibi M. ; Rossignol S. ; Tatibou?t J. M. ; Trapalis C. Mater. Lett. 2008, 62, 4204.
20 Dai K. ; Lu L. ; Liang C. ; Liu Q. ; Zhu G. Appl. Catal. B: Environ. 2014, 156, 331.
21 Xiang Q. J. ; Yu J. G. ; Jaroniec M. J. Am. Chem. Soc. 2012, 134, 6575.
22 Li Y. G. ; Wang H. L. ; Xie L. M. ; Liang Y. Y. ; Hong G. S. ; Dai H. J. Am. Chem. Soc. 2011, 133, 7296.
23 Chen X. Y. ; Lu D. F. ; Huang J. F. ; Lu Y. F. ; Zheng J. Q. Acta Phys. -Chim. Sin. 2012, 28, 161.
23 陈孝云; 陆东芳; 黄锦锋; 卢燕风; 郑建强. 物理化学学报, 2012, 28, 161.
24 Hinnemann B. ; Moses P. G. ; Bonde J. ; Jorgensen K. P. ; Nielsen J. H. ; Horch S. ; Chorkendorff I. ; Norskov J. K. J. Am. Chem. Soc. 2005, 127, 5308.
25 Ma S. ; Xie J. ; Wen J. Q. ; He K. L. ; Li X. ; Liu W. ; Zhang X. C. Appl. Surf. Sci. 2017, 391, 580.
26 Yu H. G. ; Xiao P. ; Wang P. ; Yu J. G. Appl. Catal. B: Environ. 2016, 193, 217.
27 Kanda S. ; Akita T. ; Fujishima M. ; Tada H. J. Colloid Interface Sci. 2011, 354, 607.
28 Yang H. G. ; Sun C. H. ; Qiao S. Z. ; Zou J. ; Liu G. ; Smith S. C. ; Cheng H. M. ; Lu G. Q. Nature 2008, 453, 638.
29 Han X. G. ; Kuang Q. ; Jin M. S. ; Xie Z. X. ; Zheng L. S. J. Am. Chem. Soc. 2009, 131, 3152.
30 Xiang Q. J. ; Yu J. G. ; Jaroniec M. Nanoscale 2011, 3, 3670.
31 Wu Z. Y. ; Wang J. ; Zhou Z. Y. ; Zhao G. H. J. Mater. Chem. A 2017, 5, 12407.
32 Wang G. M. ; Feng H. Q. ; Jin W. H. ; Gao A. ; Peng X. ; Li W. ; Wu H. ; Li Z. ; Chu P. K. Appl. Surf. Sci. 2017, 414, 230.
33 Chen X. ; Zhu H. Y. ; Zhao J. C. ; Zheng Z. F. ; Gao X. P. Angew. Chem. Int. Ed. 2008, 47, 5353.
34 Tatsuma T. ; Tian Y. J. Am. Chem. Soc. 2005, 127, 7632.
35 Pany S. ; Naik B. ; Martha S. ; Parida K. ACS. Appl. Mater. Inter. 2014, 6, 839.
36 Jovic V. ; Chen W. T. ; Sun D. ; Blackford M. G. ; Idriss H. ; Geoffrey I. N. J. Catal. 2013, 305, 307.
37 Liu Y. ; Yu H. ; Wang H. ; Chen S. ; Quan X. Mater. Res. Bull. 2014, 59, 111.
38 Lang D. ; Shen T. T. ; Xiang Q. J. ChemCatChem 2015, 7, 943.
39 Li X. L. ; Li Y. D. J. Phys. Chem. B 2004, 108, 13893.
40 Zanella R. J. Catal. 2004, 222, 357.
41 Xiang Q. J. ; Y J. G. Chin. J. Catal. 2011, 32, 525.
42 Cheng N. ; Tian J. ; Liu Q. ; Ge C. ; Qusti A. H. ; Asiri A. M. ; Al-Youbi A. O. ; Sun X. ACS Appl. Mater. Interfaces 2013, 5, 6815.
[1] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[2] Shuai-Qi SUN,Yan-Hui YI,Li WANG,Jia-Liang ZHANG,Hong-Chen GUO. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1123-1129.
[3] Xiang-Xiang FAN,Xiu-Li HE,Jian-Ping LI,Xiao-Guang GAO,Jian JIA,Zhi-Mei QI. Fabrication and Surface-Enhanced Raman Scattering Properties of an Ag-Coated Polyimide Nanorod Array[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1036-1042.
[4] Xu-Dong CHEN,Zhao-Long CHEN,Jing-Yu SUN,Yan-Feng ZHANG,Zhong-Fan LIU. Graphene Glass: Direct Growth of Graphene on Traditional Glasses[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 14-27.
[5] Jin-Long. LIU,Sheng. LIU,Jian-Chao. GUO,Chen-Yi. HUA,Liang-Xian. CHEN,Jun-Jun. WEI,Li-Fu. HEI,Jing-Jing. WANG,Zhi-Hong. FENG,Qing. LIU,Cheng-Ming. LI. Formation Mechanism of the H-terminated Diamond Surface[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1741-1746.
[6] REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1215-1218.
[7] WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng. Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1406-1412.
[8] QIAO Zhi, XIE Xin-Jian, XUE Jun-Ming, LIU Hui, LIANG Li-Min, HAO Qiu-Yan, LIU Cai-Chi. Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1207-1214.
[9] LU Li-Ping, LI Jiao, WU Jing, KANG Tian-Fang, CHENG Shui-Yuan. Effects of Gold Nanoparticles on Quantum Dot Electrochemiluminescence Obtained Using a DNA Electrochemiluminescence Sensor[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 483-488.
[10] Zhi-Qiao. HE,Li-Li. TONG,Zhi-Peng. ZHANG,Jian-Meng. CHEN,Shuang. SONG. Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2341-2348.
[11] LU Xiao-Lin, ZHOU Jie, LI Bo-Lin. Nonlinear Optical Responses of Thiol Chains in Different Confined States[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2342-2348.
[12] LI Yu-Ling, KAN Cai-Xia, WANG Chang-Shun, LIU Jin-Sheng, XU Hai-Ying, NI Yuan, XU Wei, KE Jun-Hua, SHI Da-Ning. Surface Plasmon Resonance Coupling Effect of Assembled Gold Nanorods Based on the FDTD Simulation[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1827-1836.
[13] YANG Da-Wei, CHEN Chao, XIE Qing-Ji, YAO Shou-Zhuo. Comparison of Enzymatic Activities and Electroactivities of Adsorbed Glucose Oxidase on Several Nanomaterial-Modified Electrodes[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1727-1734.
[14] CHANG Da-Lei, LI Xiao-Song, ZHAO Tian-Liang, ZHU Ai-Min. Diagnosis of Emission Spectra on Chemical Vapor Deposition of TiO2 System with Atmospheric-Pressure Radio Frequency Plasma[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 625-630.
[15] WANG Yan-Yan, JIANG Yan-Xia, SUSHAAndrei, ROGACH Andrey, SUN Shi-Gang. Effect of pH and Au Nanoparticles on Cytochrome c Investigated by Electrochemistry and UV-Vis Absorption Spectroscopy[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1127-1133.