Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (4): 348-360    DOI: 10.3866/PKU.WHXB201708311
Special Issue: Special Issue for Highly Cited Researchers
REVIEW     
Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy
Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN*()
Download: HTML     PDF(1830KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Owing to their unique optical, electronic, magnetic, and surface plasmon resonance properties, nanomaterials have attracted significant attention for potential bioanalysis and biomedical applications. Aptamers are single-stranded oligonucleotides, which are generated by a procedure termed as SELEX (Systematic Evolution of Ligands by EXponential Enrichment) and typically demonstrate high affinity and selectivity toward their target molecules. As a result of their unique characteristics, aptamers are promising recognition units that can be conjugated with nanomaterials for cancer cell imaging, diagnosis, and cancer therapy. By integrating the recognition abilities of aptamers with the properties of nanomaterials, aptamer-conjugated nanomaterials can serve as extraordinary tools for bioimaging and cancer therapy. Recently, aptamer-conjugated nanomaterials have attracted significant attention in the field of specific cancer cell targeted therapy owing to their improved efficacy and lower toxicity. In this review, we summarize the progress achieved of aptamer-conjugated nanomaterials as nanocarriers for specific cancer cell diagnosis and targeted therapy. In addition to drug delivery for cancer therapy, the various achievements of the aptamer-conjugated nanomaterials in combination with other emerging technologies to improve the efficiency and selectivity of cancer therapy have also been reviewed.



Key wordsAptamer      Nanomaterial      Specific recognition      Cancer diagnosis      Targeted therapy     
Received: 10 July 2017      Published: 31 August 2017
MSC2000:  O644  
Fund:  the National Natural Science Foundation of China(21221003);the National Natural Science Foundation of China(21327009)
Corresponding Authors: Weihong TAN     E-mail: tan@chem.ufl.edu
Cite this article:

Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy. Acta Physico-Chimica Sinca, 2018, 34(4): 348-360.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201708311     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/348

Fig 1 Schematic diagramof fluorescent DNA nanodevices on target living cell surfaces based on anaptamer-tethered DNA nanodevice platform27.
Fig 2 MnO2nanosheet-aptamer nanoprobe for fluorescence/MRIbimodal tumor cell imaging37.
Aptamer Nanomaterial Application Ref.
sgc8 liposome targeted drug delivery 41
aptamer-based DNA nanoassembly targeted therapy 48
DNAnanoflowers targeted therapy 49, 50
porous hollowmagnetite nanoparticle pH-triggered, targeted therapy 56
Au-Ag nanorod light-triggered, targeted therapy 64
upconversion nanoparticle photodynamic therapy 77
gold nanorod photothermal and photodynamic therapy 89
AS1411 gold nanoparticle photodynamic therapy 76
xPSM-A9 gold nanoparticle targeted therapy 63
TDO5 aptamer-based DNA nanocircuit photodynamic therapy 75
CSC1, CSC13 gold nanorod photothermal therapy 86
Table 1 Summary of aptamer-conjugated nanomaterials for targeted cancer therapy.
Fig 3 Schematic illustration of multifunctional self-assembled nanoassemblybuilding units and photo-cross-linkednanoassembly structure48.
Fig 4 Schematic illustration of noncanonical self-assembly of multifunctional DNA NFs49.
Fig 5 Schematic illustration of the synthesis of smart multifunctional nanostructures (SMNs)56.
Fig 6 Schematic illustration of the method for preparing Dox-loaded aptamer-conjugated gold nanoparticles63.
Fig 7 Schematic diagram illustrating the formation of an aptamer-functionalized core-shell nanogel64.
Fig 8 Working scheme of DNA aptamer circuit on cell membrane75.
Fig 9 Schematic illustration of co-drug-loaded aptamer-functionalized deliveryplatform based on AuNPs76.
Fig 10 Schematic representation of aptamer switch probe-photosensitizer-gold nanoparticles for PTT and PDT89.
1 Mukerjee A. ; Ranjan A. P. ; Vishwanatha J. K. Curr. Med. Chem. 2012, 19, 3714.
2 Barbas A. S. ; Mi J. ; Clary B. M. ; White R. R. FutureOncol. 2010, 6, 1117.
3 Li J. ; Li D. X. ; Yuan R. ; Xiang Y. ACS Appl. Mater. Interfaces 2017, 9, 5717.
4 Lu Q. ; Ericson D. ; Song Y. ; Zhu C. Z. ; Ye R. F. ; Liu S. Q. ; Spernyak J. A. ; Du D. ; Li H. ; Wu Y. ; Lin Y.H. ACS Appl. Mater. Interfaces 2017, 9, 23325.
5 Wei R. Y. ; Wei Z. W. ; Sun L. N. ; Zhang J. Z. ; Liu J. L. ; Ge X. Q. ; Shi L. Y. ACS Appl. Mater. Interfaces 2016, 8, 400.
6 Venkateswarlu S. ; Lee D. ; Yoon M. ACS Appl. Mater. Interfaces 2016, 8, 23876.
7 Wang P. F. ; Wu S. Y. ; Tian C. ; Yu G. M. ; Jiang W. ; Wang G. S. ; Mao C. D. J. Am. Chem. Soc. 2016, 138, 13579.
8 Zhou W. J. ; Li D. X. ; Xiong C. Y. ; Yuan R. ; Xiang Y. ACS Appl. Mater. Interfaces 2016, 8, 13303.
9 Tian C. ; Kim H. ; Sun W. ; Kim Y. ; Yin P. ; Liu H. T. ACS Nano 2017, 11, 227.
10 Bamrungsap S. ; Zhao Z. ; Chen T. ; Wang L. ; Li C. ; Fu T. ; Tan W. Nanomedicine 2012, 7, 1253.
11 Gu F. X. ; Karnik R. ; Wang A. Z. ; Alexis F. ; Levynissenbaum E. ; Hong S. ; Langer R. ; Farokhzad O. C. NanoToday 2007, 2, 14.
12 Tian J. W. ; Ding L. ; Ju H. X. ; Yang Y. C. ; Li X. L. ; Shen Z. ; Zhu Z. ; Yu J. S. ; Yang C. J. Angew. Chem.-Int. Edit. 2014, 53, 9544.
13 Ni X. ; Castanares M. ; Mukherjee A. ; Lupold S. E. Curr. Med. Chem. 2011, 18, 4206.
14 Chang Y. M. ; Donovan M. J. ; Tan W. J. Nucleic Acids 2013, 2013, 817350.
15 Ellington A. D. ; Szostak J. W. Nature 1990, 346, 818.
16 Huizenga D. E. ; Szostak J. W. Biochemistry 1995, 34, 656.
17 Duan M. ; Long Y. ; Yang C. ; Wu X. ; Sun Y. ; Li J. ; Hu X. ; Lin W. ; Han D. ; Zhao Y. Oncotarget 2016, 7, 36436.
18 Long Y. ; Qin Z. ; Duan M. ; Li S. ; Wu X. ; Lin W. ; Li J. ; Zhao Z. ; Liu J. ; Xiong D. Sci. Rep. 2016, 6, 24986.
19 Wu X. ; Zhao Z. ; Bai H. ; Fu T. ; Yang C. ; Hu X. ; Liu Q. ; Champanhac C. ; Teng I. ; Ye M. Theranostics 2015, 5, 985.
20 Hermann T. ; Patel D. J. Science 2000, 287, 820.
21 Zhang Y. ; Hong H. ; Cai W. Curr. Med. Chem. 2011, 18, 4185.
22 Li X. ; Zhao Q. ; Qiu L.J. Control Release 2013, 171, 152.
23 Wang H. ; Yang R. ; Yang L. ; Tan W. ACS Nano 2009, 3, 2451.
24 Stadler A. ; Chi C. ; Der Lelie D. V. ; Gang O. Nanomedicine 2010, 5, 319.
25 Lee J. H. ; Yigit M. V. ; Mazumdar D. ; Lu Y. Adv. Drug Deliv. Rev. 2010, 62, 592.
26 Chen T. ; Shukoor M. I. ; Chen Y. ; Yuan Q. ; Zhu Z. ; Zhao Z. ; Gulbakan B. ; Tan W. Nanoscale 2011, 3, 546.
27 Zhu G. ; Zhang S. ; Song E. ; Zheng J. ; Hu R. ; Fang X. ; Tan W. Angew. Chem. 2013, 52, 5490.
28 Wang Y. M. ; Wu Z. ; Liu S. J. ; Chu X. Anal. Chem. 2015, 87, 6470.
29 Ding C. F. ; Ge Y. ; Zhang S. S. Chem.-Eur. J. 2010, 16
30 Wu M. S. ; Yuan D. J. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2013, 85, 11960.
31 Yan M. ; Sun G. Q. ; Liu F. ; Lu J. J. ; Yu J. H. ; Song X. R. Anal. Chim. Acta 2013, 798, 33.
32 Liu H. Y. ; Xu S. M. ; He Z. M. ; Deng A. P. ; Zhu J. J. Anal. Chem. 2013, 85, 3385.
33 Zhao J. J. ; Zhang L. L. ; Chen C. F. ; Jiang J. H. ; Yu R. Q. Anal. Chim. Acta 2012, 745, 106.
34 Terreno E. ; DelliCastelli D. ; Viale A. ; Aime S. Chem. Rev. 2010, 110, 3019.
35 van Dam G. M. ; Themelis G. ; Crane L. M. A. ; Harlaar N. J. ; Pleijhuis R. G. ; Kelder W. ; Sarantopoulos A. ; de Jong J. S. ; Arts H. J. G. ; van der Zee A. G. J. ; Bart J. ; Low P. S. ; Ntziachristos V. Nat. Med. 2011, 17, 1315.
36 Louie A. Y. Chem. Rev. 2010, 110, 3146.
37 Zhao Z. L. ; Fan H. H. ; Zhou G. F. ; Bai H. R. ; Liang H. ; Wang R. W. ; Zhang X. B. ; Tan W. H. J. Am. Chem. Soc. 2014, 136, 11220.
38 Ding K. ; Alemdaroglu F. E. ; Boersch M. ; Berger R. ; Herrmann A. Angew. Chem.-Int. Edit. 2007, 46, 1172.
39 Alemdaroglu F. E. ; Alemdaroglu N. C. ; Langguth P. ; Herrmann A. Macromol. Rapid Commun. 2008, 29, 326.
40 Zhao Y. Q. ; Duan S. F. ; Zeng X. ; Liu C. J. ; Davies N. M. ; Li B. Y. ; Forrest M. L. Mol. Pharm. 2012, 9, 1705.
41 Wu Y. R. ; Sefah K. ; Liu H. P. ; Wang R. W. ; Tan W. H. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 5.
42 Mallikaratchy P. ; Tang Z. W. ; Kwame S. ; Meng L. ; Shangguan D. H. ; Tan W. H. Mol. Cell. Proteomics 2007, 6, 2230.
43 Meng H. M. ; Fu T. ; Zhang X. B. ; Tan W. H. Natl. Sci. Rev. 2015, 2, 71.
44 Kang H. Z. ; O'Donoghue M. B. ; Liu H. P. ; Tan W. H. Chem. Commun. 2010, 46, 249.
45 Mann A. P. ; Bhavane R. C. ; Somasunderam A. ; Montalvo-Ortiz B. L. ; Ghaghada K. B. ; Volk D. ; Nieves-Alicea R. ; Suh K. S. ; Ferrari M. ; Annapragada A. ; Gorenstein D. G. ; Tanaka T. Oncotarget 2011, 2, 298.
46 Drmanac R. ; Sparks A. B. ; Callow M. J. ; Halpern A. L. ; Burns N. L. ; Kermani B. G. ; Carnevali P. ; Nazarenko I. ; Nilsen G. B. ; Yeung G. ; et al Science 2010, 327, 78.
47 Zhang H. M. ; Ma Y. L. ; Xie Y. ; An Y. ; Huang Y. S. ; Zhu Z. ; Yang C. Y. J. Sci. Rep. 2015, 5, 10099.
48 Wu C. C. ; Han D. ; Chen T. ; Peng L. ; Zhu G. Z. ; You M. X. ; Qiu L. P. ; Sefah K. ; Zhang X. B. ; Tan W. H. J. Am. Chem. Soc. 2013, 135, 18644.
49 Zhu G. Z. ; Hu R. ; Zhao Z. L. ; Chen Z. ; Zhang X. B. ; Tan W. H. J. Am. Chem. Soc. 2013, 135, 16438.
50 Hu R. ; Zhang X. B. ; Zhao Z. L. ; Zhu G. Z. ; Chen T. ; Fu T. ; Tan W. H. Angew. Chem.-Int. Edit. 2014, 53, 5821.
51 Liu Z. ; Robinson J. T. ; Tabakman S. M. ; Yang K. ; Dai H. J. Mater. Today 2011, 14, 316.
52 Yang L. ; Zhang X. B. ; Ye M. ; Jiang J. H. ; Yang R. H. ; Fu T. ; Chen Y. ; Wang K. M. ; Liu C. ; Tan W. H. Adv. Drug Deliv. Rev. 2011, 63, 1361.
53 Dobson J. Nanomedicine: Nanotechnology, Biology, & Medicine 2006, 1, 31.
54 Wang A. Z. ; Bagalkot V. ; Vasilliou C. C. ; Gu F. ; Alexis F. ; Zhang L. ; Shaikh M. ; Yuet K. ; Cima M. J. ; Langer R. ; Kantoff P. W. ; Bander N. H. ; Jon S. Y. ; Farokhzad O. C. Chem. Med. Chem. 2008, 3, 1311.
55 Yu M. K. ; Kim D. ; Lee I. H. ; So J. S. ; Jeong Y. Y. ; Jon S. Small 2011, 7, 2241.
56 Chen T. ; Shukoor M. I. ; Wang R. W. ; Zhao Z. L. ; Yuan Q. ; Bamrungsap S. ; Xiong X. L. ; Tan W. H. ACS Nano 2011, 5, 7866.
57 Zheng J. ; Zhu G. Z. ; Li Y. H. ; Li C. M. ; You M. X. ; Chen T. ; Song E. Q. ; Yang R. H. ; Tan W. H. ACS Nano 2013, 7, 6545.
58 Wijaya A. ; Schaffer S. B. ; Pallares I. G. ; Hamad-Schifferli K. ACS Nano 2009, 3, 80.
59 Yang X. J. ; Liu X. ; Liu Z. ; Pu F. ; Ren J. S. ; Qu X. G. Adv. Mater. 2012, 24, 2890.
60 Chen C. C. ; Lin Y. P. ; Wang C. W. ; Tzeng H. C. ; Wu C. H. ; Chen Y. C. ; Chen C. P. ; Chen L. C. ; Wu Y. C. J. Am. Chem. Soc. 2006, 128, 3709.
61 You J. ; Zhang G. D. ; Li C. ACS Nano 2010, 4, 1033.
62 Yang X. ; Yang M. X. ; Pang B. ; Vara M. ; Xia Y. N. Chem. Rev. 2015, 115, 10410.
63 Kim D. ; Jeong Y. Y. ; Jon S. ACS Nano 2010, 4, 3689.
64 Kang H. Z. ; Trondoli A. C. ; Zhu G. Z. ; Chen Y. ; Chang Y. J. ; Liu H. P. ; Huang Y. F. ; Zhang X. L. ; Tan W. H. ACS Nano 2011, 5, 5094.
65 Qiu L. P. ; Chen T. ; Ocsoy I. ; Yasun E. ; Wu C. C. ; Zhu G. Z. ; You M. X. ; Han D. ; Jiang J. H. ; Yu R. Q. ; Tan W. H. Nano Lett. 2015, 15, 457.
66 Park H. ; Yang J. ; Lee J. ; Haam S. ; Choi I. H. ; Yoo K. H. ACS Nano 2009, 3, 2919.
67 Park J. H. ; von Maltzahn G. ; Xu M. J. ; Fogal V. ; Kotamraju V. R. ; Ruoslahti E. ; Bhatia S. N. ; Sailor M. J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 981.
68 Dolmans D. ; Fukumura D. ; Jain R. K. Nat. Rev. Cancer 2003, 3, 380.
69 Bugaj A. M. Photochem. Photobiol. Sci. 2011, 10, 1097.
70 Vrouenraets M. B. ; Visser G. W. M. ; Snow G. B. ; van Dongen G. Anticancer Res. 2003, 23, 505.
71 Ferreira C. S. M. ; Cheung M. C. ; Missailidis S. ; Bisland S. ; Gariepy J. Nucleic Acids Res. 2009, 37, 866.
72 Mallikaratchy P. ; Tang Z. W. ; Tan W. H. Chem. Med. Chem. 2008, 3, 425.
73 Wang K. L. ; You M. X. ; Chen Y. ; Han D. ; Zhu Z. ; Huang J. ; Williams K. ; Yang C. J. ; Tan W. H. Angew. Chem.-Int. Edit. 2011, 50, 6098.
74 Shieh Y. A. ; Yang S. J. ; Wei M. F. ; Shieh M. J. ACS Nano 2010, 4, 1433.
75 Han D. ; Zhu G. Z. ; Wu C. C. ; Zhu Z. ; Chen T. ; Zhang X. B. ; Tan W. H. ACS Nano 2013, 7, 2312.
76 Shiao Y.S. ; Chiu H.H. ; Wu P.H. ; Huang Y.F. ACS Appl Mater Interfaces 2014, 6, 21832.
77 Yuan Q. ; Wu Y. ; Wang J. ; Lu D. Q. ; Zhao Z. L. ; Liu T. ; Zhang X. B. ; Tan W. H. Angew. Chem. Int. Edit. 2013, 52, 13965.
78 Li L. L. ; Zhang R. B. ; Yin L. L. ; Zheng K. Z. ; Qin W. P. ; Selvin P. R. ; Lu Y. Angew. Chem. Int. Edit. 2012, 51, 6121.
79 Wang M. ; Mi C. C. ; Wang W. X. ; Liu C. H. ; Wu Y. F. ; Xu Z. R. ; Mao C. B. ; Xu S. K. ACS Nano 2009, 3, 1580.
80 Li H. ; Wang L. Y. Chem.-Asian J. 2014, 9, 153.
81 Yuan Q. ; Wu Y. ; Wang J. ; Lu D. Q. ; Zhao Z. L. ; Liu T. ; Zhang X. B. ; Tan W. H. Angew. Chem. Int. Edit. 2013, 52, 13965.
82 Fisher J. W. ; Sarkar S. ; Buchanan C. F. ; Szot C. S. ; Whitney J. ; Hatcher H. C. ; Torti S. V. ; Rylander C. G. ; Rylander M. N. Cancer Res. 2010, 70, 9855.
83 Yang H. W. ; Lu Y. J. ; Lin K. J. ; Hsu S. C. ; Huang C. Y. ; She S. H. ; Liu H. L. ; Lin C. W. ; Xiao M. C. ; Wey S. P. ; Chen P. Y. ; Yen T. C. ; Wei K. C. ; Ma C. C. M. Biomaterials 2013, 34, 7204.
84 Xiao Q. F. ; Zheng X. P. ; Bu W. B. ; Ge W. Q. ; Zhang S. J. ; Chen F. ; Xing H. Y. ; Ren Q. G. ; Fan W. P. ; Zhao K. L. ; Hua Y. Q. ; Shi J. L. J. Am. Chem. Soc. 2013, 135, 13041.
85 Jain P. K. ; Huang X. H. ; El-Sayed I. H. ; El-Sayed M. A. Accounts Chem. Res. 2008, 41, 1578.
86 Peer D. ; Karp J. M. ; Hong S. ; FaroKhzad O. C. ; Margalit R. ; Langer R. Nat. Nanotechnol. 2007, 2, 751.
87 Huang Y. F. ; Sefah K. ; Bamrungsap S. ; Chang H. T. ; Tan W. Langmuir 2008, 24, 11860.
88 Kuo W. S. ; Chang C. N. ; Chang Y. T. ; Yang M. H. ; Chien Y. H. ; Chen S. J. ; Yeh C. S. Angew. Chem. Int. Edit. 2010, 49, 2711.
89 Wang J. ; Zhu G. Z. ; You M. X. ; Song E. Q. ; Shukoor M. I. ; Zhang K. J. ; Altman M. B. ; Chen Y. ; Zhu Z. ; Huang C. Z. ; Tan W. H. ACS Nano 2012, 6, 5070.
90 Robinson J. T. ; Tabakman S. M. ; Liang Y. Y. ; Wang H. L. ; Casalongue H. S. ; Vinh D. ; Dai H. J. J. Am. Chem. Soc. 2011, 133, 6825.
91 Su S. H. ; Wang J. L. ; Wei J. H. ; Martinez-Zaguilan R. ; Qiu J. J. ; Wang S. R. New J. Chem. 2015, 39, 5743.
92 Li Q. ; Hong L. ; Li H. ; Liu C. BiosensBioelectron 2017, 89, Part 1.
93 Khan S. A. ; Kanchanapally R. ; Fan Z. ; Beqa L. ; Singh A. K. ; Senapati D. ; Ray P. C. Chem. Commun. 2012, 48, 6711.
94 Parak W. J. ; Gerion D. ; Pellegrino T. ; Zanchet D. ; Micheel C. ; Williams S. C. ; Boudreau R. ; Le Gros M. A. ; Larabell C. A. ; Alivisatos A. P. Nanotechnology 2003, 14, R15.
95 Wang J. Analyst 2005, 130, 421.
96 Pankhurst Q. ; Jones S. ; Dobson J. J. Phys. D-Appl. Phys. 2016, 49, R167.
97 Cuenot S. ; Fretigny C. ; Demoustier-Champagne S. ; Nysten B. Phys. Rev. B 2004, 69, 165410.
98 Murray C. B. ; Kagan C. R. ; Bawendi M. G. Annu. Rev. Mater. Sci. 2000, 30, 545.
99 Albert K. ; Hsu H.Y. Molecules 2016, 21, 1585.
100 Liang C. ; Guo B. S. ; Wu H. ; Shao N. S. ; Li D. F. ; Liu J. ; Dang L. ; Wang C. ; Li H. ; Li S. H. ; et al Nat. Med. 2015, 21, 288.
[1] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[2] HUANG Hao, LONG Ran, XIONG Yu-Jie. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 661-669.
[3] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[4] HOU Jing-Fei, YANG Yan-Lian, WANG Chen. Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 63-79.
[5] XU Yi-Ting, CHEN Long, CHEN Zhuo. Applications of Graphitic Nanomaterial's Optical Properties in Biochemical Sensing[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 28-39.
[6] LIU Shan-Shan, XU Zheng, ZHAO Su-Ling, LIANG Zhi-Qin, ZHU Wei. Effects of F- Concentration on the Morphologies and Fluorescent Lifetimes of Ln3+-Doped Up-Conversion Nanocrystals[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2108-2112.
[7] SUN Meng-Ting, HUANG Bi-Chun, MA Jie-Wen, LI Shi-Hui, DONG Li-Fu. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1501-1510.
[8] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming, LIANG Min, CHEN Li-Ying. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2891-2897.
[9] FENG Lei, HAO Jing-Cheng. Preparation and Property of Gold Nanoparticles from Muliple Self- Assembled Structures as Templates in LA/C14DMAO/H2O System[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 380-390.
[10] ZHANG Xiao, YANG Rong, WANG Chen, HENG Cheng-Lin. Cell Biocompatibility of Functionalized Graphene Oxide[J]. Acta Physico-Chimica Sinca, 2012, 28(06): 1520-1524.
[11] ZHANG Hua, HU Yao-Juan, WU Ping, ZHANG Hui, CAI Chen-Xin. Preparation of an Ultrahigh Aspect Ratio Anodic Aluminum Oxide Template for the Fabrication of Ni Nanowire Arrays[J]. Acta Physico-Chimica Sinca, 2012, 28(06): 1545-1550.
[12] LI Yong. Focus on the Morphology-Dependent Nanocatalysis Papers in Chinese Journal of Catalysis of the Year 2010[J]. Acta Physico-Chimica Sinca, 2011, 27(12): 2960-2962.
[13] LI Xue-Fei, ZHAO Yun, JIAO Qing-Ze, LI Han-Sheng, WU Hong-Yu, LIU Hong-Bo, CUI Wen-Jia. Preparation of One-Dimensional Titanate Nanomaterials Using Different Titania Sources[J]. Acta Physico-Chimica Sinca, 2011, 27(08): 1996-2000.
[14] MAI Li-Qiang, YANG Shuang, HAN Chun-Hua, XU Lin, XU Xu, PI Yu-Qiang. Chemical Lithiation and Electroactivity of Nanomaterials[J]. Acta Physico-Chimica Sinca, 2011, 27(07): 1551-1559.
[15] SUN Du, YIN Peng-Gang, GUO Lin. Synthesis and Raman Property of Porous Jujube-Like Cu2O Hierarchy Structure[J]. Acta Physico-Chimica Sinca, 2011, 27(06): 1543-1550.