Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (4): 377-390    DOI: 10.3866/PKU.WHXB201709001
Special Issue: Special Issue for Highly Cited Researchers
REVIEW     
Development of Graphene-based Materials for Lithium-Sulfur Batteries
Ke CHEN1,2,Zhenhua SUN1,Ruopian FANG1,Feng LI1,*(),Huiming CHENG1,3,*()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
2 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
3 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
Download: HTML     PDF(2624KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Lithium-sulfur (Li-S) batteries are promising electrochemical energy storage systems because of their high theoretical energy density, natural abundance, and environmental benignity. However, several problems such as the insulating nature of sulfur, high solubility of polysulfides, large volume variation of the sulfur cathode, and safety concerns regarding the lithium anode hinder the commercialization of Li-S batteries. Graphene-based materials, with advantages such as high conductivity and good flexibility, have shown effectiveness in realizing Li-S batteries with high energy density and high stability. These materials can be used as the cathode matrix, separator coating layer, and anode protection layer. In this review, the recent progress of graphene-based materials used in Li-S batteries, including graphene, functionalized graphene, heteroatom-doped graphene, and graphene-based composites, has been summarized. And perspectives regarding the development trend of graphene-based materials for Li-S batteries have been discussed.



Key wordsLithium sulfur battery      Graphene      Doping      Functionalization      Composites     
Received: 24 July 2017      Published: 01 September 2017
MSC2000:  O646  
Fund:  the National Key R & D Program of China(2016YFA0200102);the National Key R & D Program of China(2016YFB0100100);the National Key R & D Program of China(2014CB932402);the National Natural Science Foundation of China(51525206);the National Natural Science Foundation of China(51521091);the National Natural Science Foundation of China(51372253);the National Natural Science Foundation of China(U1401243);the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDA09010104);the Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T06);the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2015150);the Natural Science Foundation of Liaoning Province, China(2015021012);the Institute of Metal Research(2015-PY03);the CAS/SAFEA International Partnership Program for Creative Research Teams
Corresponding Authors: Feng LI,Huiming CHENG     E-mail: fli@imr.ac.cn;cheng@imr.ac.cn
Cite this article:

Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709001     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/377

Fig 1 Schematic of graphene-based material for Li-S batteries.
Fig 2 (a) The one-pot synthesis step for the production of GSC50, (b) Schematic representation of the synthesis processes for sulfur-rGO composites51.
Fig 3 Schematic of the material preparation processes of aLi2S/rGO membrane and structure changes during cycling of the Li2S/rGO membrane54.
Fig 4 Illustration of the formation process of a G/S hybrid23.
Structure characteristic Sulfur percentage
(by weight)
Initial discharge capacity
(current density?)
Cycle performance
(cycles, current density)
Sulfur-graphene composites47 17.6% 1611 mAh?g-1
(50 mA?g-1)
~600 mAh?g-1
(50 cycles, 50 mA?g-1)
Sandwich-type functionalized graphene sheet-sulfur nanocomposites48 71.9% 505 mAh?g-1
(1C)
~378 mAh?g-1
(100 cycles, 1C)
Graphene-enveloped sulfur50 87% 750 mAh?g-1
(0.2C)
~530 mAh?g-1
(50 cycles, 0.2C)
Uniformly dispersed sulfur on rGO51 63.6% ~1270 mAh?g-1
(312 mA?g-1)
804 mAh?g-1
(80 cycles, 312 mA?g-1)
Binder free 3D sulfur/few-layer graphene foam57 52%
(2 mg cm-2)
820 mAh?g-1
(800mA g-1)
518 mAh?g-1
(50 cycles, 800 mA g-1)
Flexible self-supporting graphene-sulfur paper52 67% 600 mAh?g-1
(0.1C)
~498 mAh?g-1
(100 cycles, 0.1C)
Macroporous free-standing nano-sulfur/rGO paper53 *~1 mg cm-2 1072 mAh?g-1
(100 mA?g-1)
800 mAh?g-1
(200 cycles, 300 mA?g-1)
Self-supporting fibrous graphene-sulfur hybrid23 63% 1160 mAh?g-1
(300 mA?g-1)
~550 mAh?g-1
(100 cycles, 750 mA?g-1)
3D graphene framework with ultra-high sulfur content56 90%
(*~2 mg cm-2)
969 mAh?g-1
(0.1C)
(based on cathode)
341 mAh?g-1
(500 cycles, 1C)
(based on cathode)
Graphene-encapsulated sulfur composite with a core-shell structure61 83.3% 915 mAh?g-1
(0.75C)
788 mAh?g-1
(160 cycles, 0.75C)
Sulfur-graphene nanoplatelet composites67 70% 966.1 mAh?g-1
(2C)
485.6 mAh?g-1
(500 cycles, 2C)
Dense integration of sulfur and graphene gel68 69.6% 920 mAh?g-1
(0.5C)
770 mAh?g-1
(300 cycles, 0.5C)
Vertically aligned sulfur-graphene nanowall69 80.8% 1261 mAh?g-1
(209 mA?g-1)
1210 mAh?g-1
(120 cycles, 209 mA?g-1)
Hierarchical porous graphene-sulfur composites73 68%
(*~2 mg cm-2)
434 mAh?g-1
(0.5C)
(based on cathode)
~362 mAh?g-1
(150 cycles, 0.5C)
(based on cathode)
Table 1 Characteristics of various sulfur/graphene cathodes.
Fig 5 Schematic of hierarchical porous graphene obtained by CVD growth on CaO templates73.
Fig 6 (a) Schematic of a Li-S battery with electrode configuration of one graphene membrane used as a current collector with sulfur coated on it as the active material and graphene coating polymer separator (GCC/S+G-separator)22, (b) Schematic of the electrode configuration using an integrated structure of sulfur and graphene coating PP separator and the corresponding battery assembly10.
Fig 7 Schematic and SEM image of the all-graphene structural design of a sulfur cathode6. POG: partially oxygenated graphene, HPG: highly porous graphene, HCG: highly conductive graphene.
Fig 8 Schematic of the synthesis steps for a graphene-sulfur composite, with a proposed structure of the composite8.
Fig 9 Schematic of graphitic-N, pyridinic-N and pyrrolic-N. gray ball: carbon atom, blue ball: nitrogen atom.
Fig 10 Schematic of electrode configuration for a Li–S battery with a graphene/TiO2 coating film101.
Fig 11 (a) Schematic of catalytic CVD of G/SWCNT hybrids on LDH flakes103, (b) Cycling stability of graphene-nanoLi2S@C for Li-S battery cathode, schematic and SEM micrograph of carbon coated Li2S nanoparticles on graphene114.
1 Manthiram A. ; Fu Y. Z. ; Su Y. S. Acc. Chem. Res. 2013, 46, 1125.
2 Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2011, 11, 19.
3 Fang R. P. ; Zhao S. Y. ; Sun Z. H. ; Wang D. W. ; Cheng H. M. ; Li F. Adv. Mater. 2017, 29, 1606823.
4 Yu M. ; Li R. ; Wu M. ; Shi G. Energy Storage Materials 2015, 1, 51.
5 Ji X. ; Lee K. T. ; Nazar L. F. Nat. Mater. 2009, 8, 500.
6 Fang R. P. ; Zhao S. Y. ; Pei S. F. ; Qian X. ; Hou P. X. ; Cheng H. M. ; Liu C. ; Li F. ACS Nano 2016, 10, 8676.
7 Wang D. W. ; Zhou G. M. ; Li F. ; Wu K. H. ; Lu G. Q. ; Cheng H. M. ; Gentle I. R. Phys. Chem. Chem. Phys. 2012, 14, 8703.
8 Wang H. L. ; Yang Y. ; Liang Y. Y. ; Robinson J. T. ; Li Y. G. ; Jackson A. ; Cui Y. ; Dai H. J. Nano Lett. 2011, 11, 2644.
9 Su Y. S. ; Manthiram A. Nat. Commun. 2012, 3, 6.
10 Zhou G. M. ; Li L. ; Wang D. W. ; Shan X. Y. ; Pei S. ; Li F. ; Cheng H. M. Adv. Mater. 2015, 27, 641.
11 Song R. S. ; Fang R. P. ; Wen L. ; Shi Y. ; Wang S. ; Li F. J. Power Sources 2016, 301, 179.
12 Liang J. ; Yin L. C. ; Tang X. N. ; Yang H. C. ; Yan W. S. ; Song L. ; Cheng H. M. ; Li F. ACS Appl. Mater. Interfaces 2016, 8, 25193.
13 Duan B. C. ; Wang W. K. ; Wang A. B. ; Yuan K. G. ; Yu Z. B. ; Zhao H. L. ; Qiu J. Y. ; Yang Y. S. J. Mater. Chem. A 2013, 1, 13261.
14 Tang X. N. ; Sun Z. H. ; Chen K. ; Yang H. C. ; Zhuo S. P. ; Li F. Energy Storage Science and Technology 2017, 6, 345.
14 唐晓楠; 孙振华; 陈克; 杨慧聪; 禚淑萍; 李峰. 储能科学与技术, 2017, 6, 345.
15 Li Z. ; Yuan L. X. ; Yi Z. Q. ; Sun Y. M. ; Liu Y. ; Jiang Y. ; Shen Y. ; Xin Y. ; Zhang Z. L. ; Huang Y. H. Adv. Energy Mater. 2014, 4, 8.
16 Li Z. ; Jiang Y. ; Yuan L. X. ; Yi Z. Q. ; Wu C. ; Liu Y. ; Strasser P. ; Huang Y. H. ACS Nano 2014, 8, 9295.
17 Li J. ; Wu J. ; Zhang T. ; Huang L. Acta Phys. -Chim. Sin. 2017, 33, 968.
17 李君涛; 吴娇红; 张涛; 黄令. 物理化学学报, 2017, 33, 968.
18 Zhou G. ; Wang D. W. ; Li F. ; Hou P. X. ; Yin L. ; Liu C. ; Lu G. Q. ; Gentle I. R. ; Cheng H. M. Energy Environ. Sci. 2012, 5, 8901.
19 Fang R. P. ; Zhao S. Y. ; Hou P. X. ; Cheng M. ; Wang S. G. ; Cheng H. M. ; Liu C. ; Li F. Adv. Mater. 2016, 28, 3374.
20 Zheng G. Y. ; Yang Y. ; Cha J. J. ; Hong S. S. ; Cui Y. Nano Lett. 2011, 11, 4462.
21 Zhou G. M. ; Li L. ; Ma C. Q. ; Wang S. G. ; Shi Y. ; Koratkar N. ; Ren W. C. ; Li F. ; Cheng H. M. Nano Energy 2015, 11, 356.
22 Zhou G. M. ; Pei S. F. ; Li L. ; Wang D. W. ; Wang S. G. ; Huang K. ; Yin L. C. ; Li F. ; Cheng H. M. Adv. Mater. 2014, 26, 625.
23 Zhou G. M. ; Y L. C. ; Wang D. W. ; Li L. ; Pei S. F. ; Gentle I. R. ; Li F. ; Cheng H. M. ACS Nano 2013, 7, 5367.
24 Li Q. Z. ; Li Y. H. ; Li Y. J. ; Liu Y. N. Acta Phys. -Chim. Sin. 2014, 30, 1474.
24 李庆洲; 李玉惠; 李亚娟; 刘又年. 物理化学学报, 2014, 30, 1474.
25 Zhang C. F. ; Wu H. B. ; Yuan C. Z. ; Guo Z. P. ; Lou X. W. Angew. Chem. Int. Ed. 2012, 51, 9592.
26 He G. ; Evers S. ; Liang X. ; Cuisinier M. ; Garsuch A. ; Nazar L. F. ACS Nano 2013, 7, 10920.
27 Yang Y. ; Yu G. H. ; Cha J. J. ; Wu H. ; Vosgueritchian M. ; Yao Y. ; Bao Z. A. ; Cui Y. ACS Nano 2011, 5, 9187.
28 Sun Z. H. ; Zhang J. Q. ; Yin L. C. ; Hu G. J. ; Fang R. P. ; Cheng H. M. ; Li F. Nat. Commun. 2017, 8, 8.
29 Yang C. P. ; Yin Y. X. ; Zhang S. F. ; Li N. W. ; Guo Y. G. Nat. Commun. 2015, 6, 8058.
30 Lin D. ; Liu Y. ; Liang Z. ; Lee H. W. ; Sun J. ; Wang H. ; Yan K. ; Xie J. ; Cui Y. Nat. Nanotech. 2016, 11, 626.
31 Li W. ; Yao H. ; Yan K. ; Zheng G. ; Liang Z. ; Chiang Y. M. ; Cui Y. Nat. Commun. 2015, 6, 7436.
32 Zhao C. Z. ; Cheng X. B. ; Zhang R. ; Peng H. J. ; Huang J. Q. ; Ran R. ; Huang Z. H. ; Wei F. ; Zhang Q. Energy Storage Materials 2016, 3, 77.
33 Morozov S. V. ; Novoselov K. S. ; Katsnelson M. I. ; Schedin F. ; Elias D. C. ; Jaszczak J. A. ; Geim A. K. Phys. Rev. Lett. 2008, 100, 016602.
34 Geim A. K. Science 2009, 324, 1530.
35 Liang J. ; Wen L. ; Cheng H. M. ; Li F. J. Electrochem. 2015, 21, 505.
35 梁骥; 闻雷; 成会明; 李峰. 电化学, 2015, 21, 505.
36 Wang D. W. ; Zeng Q. C. ; Zhou G. M. ; Yin L. C. ; Li F. ; Cheng H. M. ; Gentle I. R. ; Lu G. Q. M. J. Mater. Chem. A 2013, 1, 9382.
37 Cuisinier M. ; Cabelguen P. E. ; Evers S. ; He G. ; Kolbeck M. ; Garsuch A. ; Bolin T. ; Balasubramanian M. ; Nazar L. F. J. Phys. Chem. Lett. 2013, 4, 3227.
38 Lv W. ; Li Z. ; Deng Y. ; Yang Q. H. ; Kang F. Energy Storage Materials 2016, 2, 107.
39 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
40 Pu N. W. ; Wang C. A. ; Sung Y. ; Liu Y. M. ; Ger M. D. Mater. Lett. 2009, 63, 1987.
41 Liu X. ; Liu J. ; Zhan D. ; Yan J. ; Wang J. ; Chao D. ; Lai L. ; Chen M. ; Yin J. ; Shen Z. RSC Adv. 2013, 3, 11601.
42 Chen I. W. P. ; Chen Y. S. ; Kao N. J. ; Wu C. W. ; Zhang Y. W. ; Li H. T. Carbon 2015, 90, 16.
43 Parvez K. ; Yang S. ; Feng X. ; Müllen K. Synthetic Met. 2015, 210, 123.
44 Wei Y. ; Sun Z. Curr. Opin. Colloid In. 2015, 20, 311.
45 Singh R. K. ; Kumar R. ; Singh D. P. RSC Adv. 2016, 6, 64993.
46 Yang S. ; Lohe M. R. ; Mullen K. ; Feng X. Adv. Mater. 2016, 28, 6213.
47 Wang J. Z. ; Lu L. ; Choucair M. ; Stride J. A. ; Xu X. ; Liu H. K. J. Power Sources 2011, 196, 7030.
48 Cao Y. ; Li X. ; Aksay I. A. ; Lemmon J. ; Nie Z. ; Yang Z. ; Liu J. Phys. Chem. Chem. Phys. 2011, 13, 7660.
49 Wei Z. K. ; Chen J. J. ; Qin L. L. ; Nemage A. W. ; Zheng M. S. ; Dong Q. F. J. Electrochem. Soc. 2012, 159, A1236.
50 Evers S. ; Nazar L. F. Chem. Commun(Camb). 2012, 48, 1233.
51 Sun H. ; Xu G. L. ; Xu Y. F. ; Sun S. G. ; Zhang X. ; Qiu Y. ; Yang S. Nano Res. 2012, 5, 726.
52 Jin J. ; Wen Z. ; Ma G. ; Lu Y. ; Cui Y. ; Wu M. ; Liang X. ; Wu X. Rsc Adv. 2013, 3, 2558.
53 Wang C. ; Wang X. ; Wang Y. ; Chen J. ; Zhou H. ; Huang Y. Nano Energy 2015, 11, 678.
54 Wang C. ; Wang X. ; Yang Y. ; Kushima A. ; Chen J. ; Huang Y. ; Li J. Nano Lett. 2015, 15, 1796.
55 Xu C. ; Wu Y. ; Zhao X. ; Wang X. ; Du G. ; Zhang J. ; Tu J. J. Power Sources 2015, 275, 22.
56 Papandrea B. ; Xu X. ; Xu Y. X. ; Chen C. Y. ; Lin Z. Y. ; Wang G. M. ; Luo Y. Z. ; Liu M. ; Huang Y. ; Mai L. Q. ; Duan X. F. Nano Res. 2016, 9, 240.
57 Xi K. ; Kidambi P. R. ; Chen R. ; Gao C. ; Peng X. ; Ducati C. ; Hofmann S. ; Kumar R. V. Nanoscale 2014, 6, 5746.
58 Lu S. ; Chen Y. ; Wu X. ; Wang Z. ; Li Y. Sci. Rep. 2014, 4, 4629.
59 Liu Y. ; Guo J. ; Zhang J. ; Su Q. ; Du G. Appl. Surf. Sci. 2015, 324, 399.
60 Lin T. Q. ; Tang Y. F. ; Wang Y. M. ; Bi H. ; Liu Z. Q. ; Huang F. Q. ; Xie X. M. ; Jiang M. H. Energy Environ. Sci. 2013, 6, 1283.
61 Xu H. ; Deng Y. ; Shi Z. ; Qian Y. ; Meng Y. ; Chen G. J. Mater. Chem. A 2013, 1, 15142.
62 Peng H. J. ; Liang J. ; Zhu L. ; Huang J. Q. ; Cheng X. B. ; Guo X. ; Ding W. ; Zhu W. ; Zhang Q. ACS Nano 2014, 8, 11280.
63 Li Z. ; Zhang S. ; Zhang C. ; Ueno K. ; Yasuda T. ; Tatara R. ; Dokko K. ; Watanabe M. Nanoscale 2015, 7, 14385.
64 Fei L. F. ; Li X. G. ; Bi W. T. ; Zhuo Z. W. ; Wei W. F. ; Sun L. ; Lu W. ; Wu X. J. ; Xie K. Y. ; Wu C. Z. ; Chan H. L. W. ; Wang Y. Adv. Mater. 2015, 27, 5936.
65 Bao W. Z. ; Zhang Z. A. ; Qu Y. H. ; Zhou C. K. ; Wang X. W. ; Li J. J. Alloy. Compd. 2014, 582, 334.
66 Wu H. ; Huang Y. ; Zong M. ; Fu H. ; Sun X. Electrochim. Acta 2015, 163, 24.
67 Xu J. ; Shui J. ; Wang J. ; Wang M. ; Liu H. K. ; Dou S. X. ; Jeon I. Y. ; Seo J. M. ; Baek J. B. ; Dai L. ACS Nano 2014, 8, 10920.
68 Li H. ; Yang X. ; Wang X. ; Liu M. ; Ye F. ; Wang J. ; Qiu Y. ; Li W. ; Zhang Y. Nano Energy 2015, 12, 468.
69 Li B. ; Li S. ; Liu J. ; Wang B. ; Yang S. Nano Lett. 2015, 15, 3073.
70 Shi J. L. ; Peng H. J. ; Zhu L. ; Zhu W. ; Zhang Q. Carbon 2015, 92, 96.
71 Huang X. ; Sun B. ; Li K. ; Chen S. ; Wang G. J. Mater. Chem. A 2013, 1, 13484.
72 Zhai P. Y. ; Peng H. J. ; Cheng X. B. ; Zhu L. ; Huang J. Q. ; Zhu W. ; Zhang Q. Energy Storage Materials 2017, 7, 56.
73 Tang C. ; Li B. Q. ; Zhang Q. ; Zhu L. ; Wang H. F. ; Shi J. L. ; Wei F. Adv. Funct. Mater. 2016, 26, 577.
74 Cheng X. B. ; Peng H. J. ; Huang J. Q. ; Zhang R. ; Zhao C. Z. ; Zhang Q. ACS Nano 2015, 9, 6373.
75 Su Y. S. ; Manthiram A. Chem. Commun. 2012, 48, 8817.
76 Peng H. J. ; Wang D. W. ; Huang J. Q. ; Cheng X. B. ; Yuan Z. ; Wei F. ; Zhang Q. Adv. Sci. 2016, 3, 1500268.
77 Huang J. Q. ; Zhang Q. ; Wei F. Energy Storage Materials 2015, 1, 127.
78 Wang X. F. ; Wang Z. X. ; Chen L. Q. J. Power Sources 2013, 242, 65.
79 Wei L. ; Chen J. ; Luo H. Z. ; Li F. Chin. Sci. Bull. 2015, 60, 630.
79 闻雷; 陈静; 罗洪泽; 李峰. 科学通报, 2015, 60, 630.
80 Ji L. ; Rao M. ; Zheng H. ; Zhang L. ; Li Y. ; Duan W. ; Guo J. ; Cairns E. J. ; Zhang Y. J. Am. Chem. Soc. 2011, 133, 18522.
81 Xiao M. ; Huang M. ; Zeng S. ; Han D. ; Wang S. ; Sun L. ; Meng Y. RSC Adv. 2013, 3, 4914.
82 Rong J. ; Ge M. ; Fang X. ; Zhou C. Nano Lett. 2014, 14, 473.
83 Liu S. ; Xie K. ; Li Y. ; Chen Z. ; Hong X. ; Zhou L. ; Yuan J. ; Zheng C. Rsc Adv. 2015, 5, 5516.
84 Huang J. Q. ; Zhuang T. Z. ; Zhang Q. ; Peng H. J. ; Chen C. M. ; Wei F. ACS Nano 2015, 9, 3002.
85 Bai S. ; Liu X. ; Zhu K. ; Wu S. ; Zhou H. Nat. Energy 2016, 1, 16094.
86 Zhuang T. Z. ; Huang J. Q. ; Peng H. J. ; He L. Y. ; Cheng X. B. ; Chen C. M. ; Zhang Q. Small 2016, 12, 381.
87 Zhou L. ; Lin X. ; Huang T. ; Yu A. J. Mater. Chem. A 2014, 2, 5117.
88 Wang Z. ; Dong Y. ; Li H. ; Zhao Z. ; Wu H. B. ; Hao C. ; Liu S. ; Qiu J. ; Lou X. W. Nat. Commun. 2014, 5, 5002.
89 Zhou G. ; Paek E. ; Hwang G. S. ; Manthiram A. Adv. Energy Mater. 2016, 6, 1501355.
90 Xie Y. ; Meng Z. ; Cai T. ; Han W. Q. ACS Appl. Mater. Inter. 2015, 7, 25202.
91 Qiu Y. C. ; Li W. F. ; Zhao W. ; Li G. Z. ; Hou Y. ; Liu M. N. ; Zhou L. S. ; Ye F. M. ; Li H. F. ; Wei Z. H. ; Yang S. H. ; Duan W. H. ; Ye Y. F. ; Guo J. H. ; Zhang Y. G. Nano Lett. 2014, 14, 4821.
92 Niu S. ; Lv W. ; Zhang C. ; Li F. ; Tang L. ; He Y. ; Li B. ; Yang Q. H. ; Kang F. J. Mater. Chem. A 2015, 3, 20218.
93 Song J. ; Yu Z. ; Gordin M. L. ; Wang D. Nano Lett. 2016, 16, 864.
94 Li L. ; Zhou G. M. ; Yin L. C. ; Koratkar N. ; Li F. ; Cheng H. M. Carbon 2016, 108, 120.
95 Yin L. C. ; Liang J. ; Zhou G. M. ; Li F. ; Saito R. ; Cheng H. M. Nano Energy 2016, 25, 203.
96 Ma Z. ; Dou S. ; Shen A. ; Tao L. ; Dai L. ; Wang S. Angew. Chem. Int. Ed. 2015, 54, 1888.
97 Yuan X. Q. ; Liu B. C. ; Hou H. J. ; Zeinu K. ; He Y. H. ; Yang X. R. ; Xue W. J. ; He X.L. ; Huang L. ; Zhu X. L. ; Wu L. S. ; Hu J. P. ; Yang J. K. ; Xie J. Rsc Adv. 2017, 7, 22567.
98 Xing L. B. ; Xi K. ; Li Q. ; Su Z. ; Lai C. ; Zhao X. ; Kumar R. V. J. Power Sources 2016, 303, 22.
99 Li F. ; Su Y. ; Zhao J. J. Phys. Chem. Chem. Phys. 2016, 18, 25241.
100 Yu M. ; Yuan W. ; Li C. ; Hong J. D. ; Shi G. J. Mater. Chem. A 2014, 2, 7360.
101 Xiao Z. ; Yang Z. ; Wang L. ; Nie H. ; Zhong M. e. ; Lai Q. ; Xu X. ; Zhang L. ; Huang S. Adv. Mater. 2015, 27, 2891.
102 Yu M. ; Wang A. ; Tian F. ; Song H. ; Wang Y. ; Li C. ; Hong J. D. ; Shi G. Nanoscale 2015, 7, 5292.
103 Zhao M. Q. ; Liu X. F. ; Zhang Q. ; Tian G. L. ; Huang J. Q. ; Zhu W. C. ; Wei F. ACS Nano 2012, 6, 10759.
104 Ding Y. L. ; Kopold P. ; Hahn K. ; van Aken P. A. ; Maier J. ; Yu Y. Adv. Funct. Mater. 2016, 26, 1112.
105 Niu S. ; Lv W. ; Zhang C. ; Shi Y. ; Zhao J. ; Li B. ; Yang Q. H. ; Kang F. J. Power Sources 2015, 295, 182.
106 Zhu L. ; Peng H. J. ; Liang J. ; Huang J. Q. ; Chen C. M. ; Guo X. ; Zhu W. ; Li P. ; Zhang Q. Nano Energy 2015, 11, 746.
107 Yuan S. ; Guo Z. ; Wang L. ; Hu S. ; Wang Y. ; Xia Y. Adv. Sci. 2015, 2, 1500071.
108 Zhou X. ; Xie J. ; Yang J. ; Zou Y. ; Tang J. ; Wang S. ; Ma L. ; Liao Q. J. Power Sources 2013, 243, 993.
109 Wang B. ; Wen Y. ; Ye D. ; Yu H. ; Sun B. ; Wang G. ; Hulicova-Jurcakova D. ; Wang L. Chem. Eur. J. 2014, 20, 5224.
110 Liu S. ; Xie K. ; Chen Z. ; Li Y. ; Hong X. ; Xu J. ; Zhou L. ; Yuan J. ; Zheng C. J. Mater. Chem. A 2015, 3, 11395.
111 Yang Y. ; Risse S. ; Mei S. L. ; Jafta C. J. ; Lu Y. ; St?cklein C. ; Kardjilov N. ; Manke I. ; Gong L. ; Kochovski Z. ; Ballauff M. Energy Storage Materials 2017, 9, 96.
112 Bao W. ; Zhang Z. ; Chen W. ; Zhou C. ; Lai Y. ; Li J. Electrochim. Acta 2014, 127, 342.
113 Yang X. ; Zhang L. ; Zhang F. ; Huang Y. ; Chen Y. S. ACS Nano 2014, 8, 5208.
114 Wu F. ; Lee J. T. ; Zhao E. ; Zhang B. ; Yushin G. ACS Nano 2016, 10, 1333.
115 Li Z. ; Li C. ; Ge X. ; Ma J. ; Zhang Z. ; Li Q. ; Wang C. ; Yin L. Nano Energy 2016, 23, 15.
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[2] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1781-1788.
[5] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[6] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[7] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[8] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[9] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1297-1309.
[10] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[12] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[13] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[14] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 573-581.
[15] JING Tao, DAI Ying. Development of Solid Solution Photocatalytic Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 295-304.