Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (4): 339-343    DOI: 10.3866/PKU.WHXB201709081
COMMUNICATION     
Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions
Jiale XU,Lei HU,Lu WANG,Jinxia DENG,Jun CHEN*(),Xianran XING
Download: HTML     PDF(1025KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Most materials expand on heating and contract on cooling. In the recent years, however, some compounds have been found to exhibit abnormal negative thermal expansion (NTE) behavior; this presents an opportunity to adjust the coefficient of thermal expansion (CTE) of such materials. It is especially important to obtain controllable thermal expansion in isotropic compounds. Herein, we report the preparation, crystal structure, and controllable thermal expansion in double ReO3-type (Fe1-xNix)ZrF6 solid solutions. (Fe1-xNix)ZrF6 exhibits full range solubility. A controllable thermal expansion of (Fe1-xNix)ZrF6 could be achieved by the chemical substitution of Ni2+ for Fe2+ over a wide range of CTE from −3.24 × 10−6 to +18.23 × 10−6 K−1 (300–675 K). In particular, zero thermal expansion was obtained for the composition (Fe0.5Ni0.5)ZrF6. As a kind of typical framework structure, the transverse thermal vibrations of fluorine atoms are expected to play a critical role in the thermal expansion behavior of double-ReO3 compounds. This study presents a potential method to tune the thermal expansion of NTE (negative thermal expansion) families which have an open framework structure.



Key wordsSolid solution      Fluorides      ReO3      Controllable thermal expansion      Zero thermal expansion     
Received: 09 August 2017      Published: 08 September 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(91422301);the National Natural Science Foundation of China(21231001);the Fundamental Research Funds for the Central Universities, China(FRF-TP-14-012C1)
Corresponding Authors: Jun CHEN     E-mail: Junchen@ustb.edu.cn
Cite this article:

Jiale XU,Lei HU,Lu WANG,Jinxia DENG,Jun CHEN,Xianran XING. Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions. Acta Phys. -Chim. Sin., 2018, 34(4): 339-343.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709081     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/339

Fig 1 (a) Crystal structure of Fe1-xNix)ZrF6, (b) the refinement of XRD pattern for (Fe0.5Ni0.5)ZrF6. The observed and calculated diffraction data are indicated by the red circles and black line, respectively. The blue line and green bars in the lower part of the pattern show the difference and peak positions, respectively. Color online.
Fig 2 (a) XRD patterns of (Fe1-xNix)ZrF6 at room temperature, (b) Lattice constant of (Fe1-xNix)ZrF6 as function of x at room temperature.
(Fe1-xNix)ZrF6 Lattice constant (?)*
(Fe0.9Ni0.1)ZrF6 8.078132
(Fe0.8Ni0.2)ZrF6 8.065821
(Fe0.7Ni0.3)ZrF6 8.054827
(Fe0.6Ni0.4)ZrF6 8.039048
(Fe0.5Ni0.5)ZrF6 8.021041
(Fe0.4Ni0.6)ZrF6 8.014249
(Fe0.3Ni0.7)ZrF6 7.997197
(Fe0.2Ni0.8)ZrF6 7.973021
(Fe0.1Ni0.9)ZrF6 7.965178
NiZrF6 7.921129
Table 1 Lattice constants of (Fe1-xNix)ZrF6 at room temperature.
Fig 3 (a) Temperature-dependent relative change of the lattice constant of (Fe1-xNix)ZrF6 (x = 0, 0.3, 0.4, 0.5, 0.8), (b) the (200) peak of the XRD patterns of (Fe0.5Ni0.5)ZrF6 as a function of temperature.
(Fe1-xNix)ZrF6 CTE/K?1(300–675 K)
FeZrF6 ?3.24 × 10?6
(Fe0.7Ni0.3)ZrF6 -1.99 × 10?6
(Fe0.6Ni0.4)ZrF6 -0.65 × 10?6
(Fe0.5Ni0.5)ZrF6 +0.51 × 10?6
(Fe0.3Ni0.7)ZrF6 +1.51 × 10?6
NiZrF6 +18.23 × 10?6
Table 2 Coefficient of thermal expansion (CTE) of (Fe1-xNix)ZrF6.
Fig 4 (a) Temperature evolution of M―F bond lengths of (Fe1-xNix)ZrF6, (b) temperature evolution of Zr―F bond lengths of (Fe1-xNix)ZrF6.
Fig 5 Atomic displacement parameters (ADPs) of fluorine atoms perpendicular to the linkage of M―F―Zr in (Fe1-xNix)ZrF6 (x = 0, 0.5, 1.0).
1 Mary T. A. ; Evans J. S. O. ; Vogt T. ; Sleightet A. W. Science 1996, 272 (5258), 90.
2 Greve B. K. ; Martin K. L. ; Lee P. L. ; Chupas P. J. ; Chapman K. W. ; Wilkinson A. P. J. Am. Chem. Soc. 2010, 132 (44), 15496.
3 Lock N. ; Wu Y. ; Christensen M. ; Cameron L. J. ; Peterson V. K. ; Bridgeman A. J. ; Kepert C. J. ; Iversen B. B. J. Phys. Chem. 2010, 114 (39), 16181.
4 Mohn P. Nature 1999, 400 (6739), 18.
5 Takenaka K. ; Takagi H. Appl. Phys. Lett. 2005, 87 (26), 261902.
6 Deng S. ; Sun Y. ; Wu H. ; Huang Q. ; Yan J. ; Shi K. ; Malik M. I. ; Lu H. ; Wang L. ; Huang R. ; Li L. ; Wang C. Chem. Mater. 2015, 27 (7), 2495.
7 Chen J. ; Nittala K. ; Forrester J. S. ; Jones J. L. ; Deng J. ; Yu R. ; Xing X. J. Am. Chem. Soc. 2011, 133 (29), 11114.
8 Azuma M. ; Chen W. T. ; Seki H. ; Czapski M. ; Olga S. ; Oka K. ; Mizumaki M. ; Watanuki T. ; Ishimatsu N. ; Kawamura N. ; Ishiwata S. ; Tucker M. G. ; Shimakawa Y. ; Attfield J. P. Nat. Commun. 2011, 2, 347.
9 Hu L. ; Chen J. ; Sanson A. ; Wu H. ; Rodriguez C. G. ; Olivi L. ; Ren Y. ; Fan L. ; Deng J. ; Xing X. J. Am. Chem. Soc. 2016, 138 (27), 8320.
10 Dejneka M. J. ; Chapman C. L. ; Misture S. T. J. Am. Ceram. Soc. 2011, 94 (8), 2249.
11 Uchino K. ; Nomura S. ; Cross L. E. ; Newnham R. E. ; Jang S. J. J. Mater. Sci. 1981, 16 (3), 569.
12 Atkinson A. ; Barnett S. ; Gorte R. J. ; Irvine J. T. S. ; McEvoy A. J. ; Mogensen M. ; Singhal S. C. ; Vohs J. Nat. Mater. 2004, 3 (1), 17.
13 Chen J. ; Hu L. ; Deng J. ; Xing X. Chem. Soc. Rev. 2015, 44 (11), 3522.
14 Adam J. L. Chem. Rev. 2002, 102 (6), 2461.
15 Greve B. K. ; Martin K. L. ; Lee P. L. ; Chupas P. J. ; Chapman K. W. ; Wilkinson A. P. J. Am. Chem. Soc. 2010, 132 (44), 15496.
16 Hu L. ; Chen J. ; Fan L. ; Ren Y. ; Rong Y. ; Pan Z. ; Deng J. ; Yu R. ; Xing X. J. Am. Chem. Soc. 2014, 136 (39), 13566.
17 Hu L. ; Chen J. ; Fan L. ; Ren Y. ; Huang Q. ; Sanson A. ; Jiang Z. ; Zhou M. ; Rong Y. ; Wang Y. ; Deng J. ; Xing X. Adv. Mater. 2015, 27 (31), 4592.
18 Hancock J. C. ; Chapman K. W. ; Halder G. J. ; Morelock C. R. ; Kaplan B. S. ; Gallington L. C. ; Bongiorno A. ; Han C. ; Zhou S. ; Wilkinson A. P. Chem. Mater. 2015, 27 (11), 3912.
19 Hu L. ; Chen J. ; Xu J. ; Wang N. ; Han F. ; Ren Y. ; Pan Z. ; Rong Y. ; Huang R. ; Deng J. ; Li L. ; Xing X. J. Am. Chem. Soc. 2016, 138 (44), 14530.
20 Sleight A. Nature 2003, 425 (6959), 674.
21 Margadonna S. ; Prassides K. ; Fitch A. N. J. Am. Chem. Soc. 2004, 126 (47), 15390.
22 Song X. ; Sun Z. ; Huang Q. ; Rettenmayr M. ; Liu X. ; Seyring M. ; Li G. ; Rao G. ; Yin F. Adv. Mater. 2011, 23 (40), 4690.
23 Phillips A. E. ; Halder G. J. ; Chapman K. W. ; Goodwin A. L. ; Kepert C. J J., Am. Chem. Soc. 2009, 132 (1), 10.
[1] Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 295-304.
[2] XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1667-1673.
[3] JIAO Zhi-Feng, DONG Li-Li, GUO Xiao-Ning, JIN Guo-Qiang, GUO Xiang-Yun, WANG Xiao-Min. Methane Catalytic Combustion over Ni/SiC, Fe/SiC and Co/SiC Modified by Zr0.5Ce0.5O2 Solid Solution[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1941-1946.
[4] ZHOU He-Gen, WEN Xing-Wei, FANG Zhen-Xing, Li Yi, DING Kai-Ning, HUANG Xin, ZHANG Yong-Fan. Electronic Structures and Optical Properties of AgGa(S1-xSex)2 Solid Solutions[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 920-928.
[5] CAO Hong-Yan, WANG Jian-Li, YAN Sheng-Hui, LIU Zhi-Min, GONG Mao-Chu, CHEN Yao-Qiang. Effect of Doping M (M = Mn, Y) into Ce0.50Zr0.50O2 on the Properties of MnOx/Ce0.50-zZr0.50-zM2zOy/Al2O3 for Catalytic Combustion of Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2012, 28(08): 1936-1942.
[6] XIONG Li-Long, XU You-Long, ZHANG Cheng, TAO Tao. Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1177-1182.
[7] LI Lan, HU Geng-Shen, LU Ji-Qing, LUO Meng-Fei. Review of Oxygen Vacancies in CeO2-doped Solid Solutions as Characterized by Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1012-1020.
[8] WANG Zhao, WU Feng, SU Yue-Feng, BAO Li-Ying, CHEN Lai, LI Ning, CHEN Shi. Preparation and Characterization of xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2 Cathode Materials for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 823-830.
[9] ZHU Yi, WANG Jian-Li, CHEN Yong-Dong, LIAO Chuan-Wen, WANG Shi-Dan, GONG Mao-Chu, CHEN Yao-Qiang. Catalytic Combustion of Diesel Soot over Ce0.5+xZr0.4-xLa0.1O2-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 925-931.
[10] YANG Zhi-Bin, ZHANG Yu-Wen, ZHANG Yun-Yan, DING Wei-Zhong, SHEN Pei-Jun, LIU Yong, ZHOU Yu-Ding, HUANG Shao-Qing. Hydrogen Production fromCoke Oven Gas byMethane Reforming: Thermodynamic Analysis and Experimental Study[J]. Acta Phys. -Chim. Sin., 2010, 26(02): 350-358.
[11] YAN Dong-Xia, WANG Hua, LI Kong-Zhai, WEI Yong-Gang, ZHU Xing, CHENG Xian-Ming. Structure and Catalytic Property of Ce1-xFexO2 Mixed Oxide Catalysts for Low Temperature Soot Combustion[J]. Acta Phys. -Chim. Sin., 2010, 26(02): 331-337.
[12] WANG Qi-Zhao, JIANG Li, LIU Hui, YUAN Jian, CHEN Ming-Xia, SHI Jian-Wei, SHANGGUAN Wen-Feng. Preparation and Characterization of Bi1-xGdxVO4 Photocatalyst and Its Application toWater Splitting[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1703-1707.
[13] XIAO Xiao-Yan, LU Ji-Qing, SU Xiao-Wen, GUO Ming, LUO Meng-Fei. PdO-CeO2 Composite Catalysts for Low Temperature CO Oxidation[J]. Acta Phys. -Chim. Sin., 2009, 25(03): 561-566.
[14] JIA Yan-Min; LIU Fei-Ye; XIAO Xue-Zhang; HANG Zhou-Ming; LEI Yong-Quan; CHEN Li-Xin. Microstructure and Electrochemical Properties of V2.1TiNi0.4Zr0.06Cu0.03M0.10 (M=Cr, Co, Fe, Nb, Ta) Hydrogen Storage Alloys[J]. Acta Phys. -Chim. Sin., 2009, 25(02): 247-252.
[15] XIAO Li-Hua, SUN Kun-Peng, XU Xian-Lun. Catalytic Combustion of Methane over CeO2-MOx (M=La3+, Ca2+) Solid Solution Promoted Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 2108-2113.