Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (4): 424-436    DOI: 10.3866/PKU.WHXB201709082
ARTICLE     
Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms
Jiao LIU1,3,Jicun HUO1,3,Min ZHANG2,*(),Xiandui DONG1,*()
1 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
2 Institute of New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(3965KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The ultrafast photoluminescence dynamics of three organic dyes—C210, C214, and C216—with different conjugated linkers containing various heteroatoms, such as bifuran, bithiophene and biselenophene, in combination with dihexyloxy-substituted triphenylamine (TPA) as the electron donor and cyanoacrylic acid (CA) as the electron acceptor have been studied systematically. The excited-state dynamics of the three dyes were investigated in detail in different media: tetrahydrofuran (THF) and toluene (PhMe) solutions, polymethyl methacrylate (PMMA) and polystyrene (PS) polymer films, and the surfaces of alumina and titania films in contact with an ionic liquid composite electrolyte. These dyes were found to feature dynamic Stokes shifts in all the aforementioned media, indicating stepwise intramolecular relaxations of the non-equilibrium excited state. The electron injection yield was distinctly lower for the non-equilibrium excited state than the equilibrium excited states, which can be ascribed to the competition between torsional relaxation and electron injection. A broad time scale over one magnitude of order was presented for electron injection due to the great energy losses originating from the multiple torsional relaxations, which should be controlled for future dye design and device development. Moreover, despite the shorter lifetimes of the equilibrium excited states for C210 and C216 than C214, the electron injection yields of equilibrium excited states for all the dyes are comparable due to the accelerated electron injection rate.



Key wordsSolar cells      Excited-state dynamics      Organic dyes      Ultrafast spectroscopy      Femtosecond fluorescence up-conversion     
Received: 15 August 2017      Published: 08 September 2017
MSC2000:  O644  
Fund:  the National Science Foundation of China(51473158);the National Science Foundation of China(91233206)
Corresponding Authors: Min ZHANG,Xiandui DONG     E-mail: zm2016@email.tjut.edu.cn;dxd@ciac.ac.cn
Cite this article:

Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms. Acta Phys. -Chim. Sin., 2018, 34(4): 424-436.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709082     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/424

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dye cm/(mol·cm-2·μm-1) τCal/(mA·cm-2) JSC/(mA·cm-2) VOC/mV FF/% PCE/%
C210 3.24×108 9.91±0.05 10.11±0.05 649±2 76.0± 0.5 5.0±0.1
C214 2.74×108 12.18±0.06 11.31± 0.06 685±2 73.8±0.3 5.7±0.1
C216 3.12×108 12.51±0.06 12.16±0.05 641±2 74.9±0.4 5.8±0.1
 
 
1 O'Regan B. C. ; Gr?tzel M. Nature 1991, 353, 737.
2 Mishra A. ; Fischer M. K. R. ; B?uerle P. Angew. Chem. Int. Ed. 2009, 48, 2474.
3 Imahori H. ; Umeyama T. ; Ito S. Acc. Chem. Res. 2009, 42, 1809.
4 Clifford J. N. ; Martínez-Ferrero E. ; Viterisi A. ; Palomares E. Chem. Soc. Rev. 2011, 40, 1635.
5 Wonneberger C. ; Li H. Adv. Mater. 2012, 24, 613.
6 Wu Y. ; Zhu W. Chem. Soc. Rev. 2013, 42, 2039.
7 Liang M. ; Chen J. Chem. Soc. Rev. 2013, 42, 3453.
8 Lin Y. Z. ; Huang C. H. ; Chang Y. J. ; Yeh C. W. ; Chin T. M. ; Chi K. M. ; Chou P. T. ; Watanabe M. ; Chow T. J. Tetrahedron 2014, 70, 262.
9 Li H. ; Yang Y. ; Hou Y. ; Tang R. ; Duan T. ; Chen J. ; Wang H. ; Han H. ; Peng T. ; Chen X. ; Li Q. ; Li Z. ACS Sustainable Chem. Eng. 2014, 2, 1776.
10 Kakiage K. ; Aoyama Y. ; Yano T. ; Oya K. ; Fujisawa J. I. ; Hanaya M. Chem. Commun. 2015, 51, 15894.
11 Yao Z. ; Zhang M. ; Li R. ; Yang L. ; Qiao Y. ; Wang P. Angew. Chem. Int. Ed. 2015, 127, 6092.
12 Yao Z. ; Wu H. ; Li Y. ; Wang J. ; Zhang J. ; Zhang M. ; Guo Y. ; Wang P. Energy Environ. Sci. 2015, 8, 3192.
13 Yao Z. ; Zhang M. ; Wu H. ; Yang L. ; Li R. ; Wang P. J. Am. Chem. Soc. 2015, 137, 3799.
14 Li H. ; Fang M. ; Xu T. ; Hou Y. ; Tang R. ; Chen J. ; Liu L. ; Han H. ; Peng T. ; Li Q. ; Li Z. Org. Chem. Front. 2016, 3, 233.
15 Yang L. ; Li Y. ; Chen S. ; Zhang J. ; Zhang M. ; Wang P. Acta Phys. -Chim. Sin. 2016, 32, 329.
15 杨林; 李阳; 陈淑; 张静; 张敏; 王鹏. 物理化学学报, 2016, 32, 329.
16 Weng X. L. ; Wang Y. ; Jia C. Y. ; Wan Z. Q. ; Chen X. M. ; Yao X. J. Acta Phys. -Chim. Sin. 2016, 32, 1990.
16 翁小龙; 王艳; 贾春阳; 万中全; 陈喜明; 姚小军. 物理化学学报, 2016, 32, 1990.
17 Xiao A. ; Lu H. ; Zhao Y. ; Luo G. G. Acta Phys. -Chim. Sin. 2016, 32, 2968.
17 肖岸; 卢辉; 赵阳; 骆耿耿. 物理化学学报, 2016, 32, 2968.
18 Li Z. G. ; Lu T. ; Gao H. ; Zhang Q. ; Li M. J. ; Ren W. ; Lu W. C. Acta Phys. -Chim. Sin. 2017, 33, 1789.
18 李重杲; 卢天; 高恒; 张庆; 李敏杰; 任伟; 陆文聪. 物理化学学报, 2017, 33, 1789.
19 Ren Y. ; Liu J. ; Zheng A. ; Dong X. ; Wang P. Adv. Sci. 2017, 1700099.
20 Rehm J. M. ; McLendon G. L. ; Nagasawa Y. ; Yoshihara K. ; Moser J. ; Gr?tzel M. J. Phys. Chem. 1996, 100, 9577.
21 Tachibana Y. ; Rubtsov I. V. ; Montanari I. ; Yoshihara K. ; Klug D. R. ; Durrant J. R. J. Photoch. Photobio. A 2001, 142, 215.
22 Luo L. ; Lo C. F. ; Lin C. Y. ; Chang I. J. ; Diau W. G. J. Phys. Chem. B 2006, 110, 410.
23 Martín C. ; Zió?ek M. ; Marchena M. ; Douhal A. J. Phys. Chem. C 2011, 115, 23183.
24 Adamo C. ; Jacquemin D. Chem. Soc. Rev. 2013, 42, 845.
25 Fakis M. ; Hrobárik P. ; Yushchenko O. ; SigmundováI. ; Koch M. ; Rosspeintner A. ; Stathatos E. ; Vauthey E. J. Phys. Chem. C 2014, 118, 28509.
26 Ai X. ; Guo J. ; Anderson N. A. ; Lian T. J. Phys. Chem. B 2004, 108, 12795.
27 Fakis M. ; Stathatos E. ; Tsigaridas G. ; Giannetas V. ; Persephonis P. J. Phys. Chem. C 2011, 115, 13429.
28 Yang L. ; Chen S. ; Zhang J. ; Wang J. ; Zhang M. ; Dong X. ; Wang P. J. Mater. Chem. A 2017, 5, 3514.
29 Li Y. ; Wang J. ; Yuan Y. ; Zhang M. ; Dong X. ; Wang P. Phys. Chem. Chem. Phys. 2017, 19, 2549.
30 Chen S. ; Yang L. ; Zhang J. ; Yuan Y. ; Dong X. ; Wang P. ACS Photonics 2017, 4, 165.
31 Li R. ; Zhang M. ; Yan C. ; Yao Z. ; Zhang J. ; Wang P. ChemSusChem 2015, 8, 97.
32 Yang L. ; Yao Z. ; Liu J. ; Wang J. ; Wang P. ACS Appl. Mater. Inter. 2016, 8, 9839.
33 Shank C. V. Science 1986, 233, 1276.
34 Fleming G. R. ; van Grondelle R. Current opinion in structural biology: Femtosecond spectroscopy of photosynthetic lightharvesting systems Elsevier: Holland, 1997, Vol. 7, pp. 738- 748.
35 McCamant D. W. ; Kukura P. ; Mathies R. A. J. Phys. Chem. A 2003, 107, 8208.
36 Trotzky S. ; Hoyer T. ; Tuszynski W. ; Lienau C. ; Parisi J. J. Phys. D: Appl. Phys. 2009, 42, 055105.
37 Li R. ; Lv X. ; Shi D. ; Zhou D. ; Cheng Y. ; Zhang G. ; Wang P. J. Phys. Chem. C 2009, 113, 7469.
38 Wang P. ; Zakeeruddin S. M. ; Comte P. ; Charvet R. ; Humphry-Baker R. ; Gr?tzel M. J. Phys. Chem. B 2003, 107, 14336.
39 Liu J. ; Li R. ; Si X. ; Zhou D. ; Shi Y. ; Wang Y. ; Jing X. ; Wang P. Energy Environ. Sci. 2010, 3, 1924.
40 Cai N. ; Wang Y. ; Xu M. ; Fan Y. ; Li R. ; Zhang M. ; Wang P. Adv. Funct. Mater. 2013, 23, 1846.
41 Zhang J. ; Yao Z. ; Cai N. ; Yang L. ; Xu M. ; Li R. ; Zhang M. ; Dong X. ; Wang P. Energy Environ. Sci. 2013, 6, 1604.
42 Snellenburg J. J. ; Laptenok S. P. ; Seger R. ; Mullen K. M. ; van Stokkum I. H. M. J. Stat. Softw. 2012, 49, 1.
43 Lanzani G. ; Nisoli M. ; De Silvestri S. ; Tubino R. Chemical Physics Letters: Femtosecond vibrational and torsional energy redistribution in photoexcited oligothiophenes Elsevier: Holland 1996, Vol. 251, pp. 339- 345.
44 Glasbeek M. ; Zhang H. Chem. Rev. 2004, 104, 1929.
45 Amdursky N. ; Erez Y. ; Huppert D. Acc. Chem. Res. 2012, 45, 1548.
46 Nelson T. ; Fernandez-Alberti S. ; Roitberg A. E. ; Tretiak S. Acc. Chem. Res. 2014, 47, 1155.
47 Oliver T. A. A. ; Lewis N. H. C. ; Fleming G. R. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 10061.
48 Klymchenko A. S. ; Demchenko A. R. Methods in Enzymology: Chapter 3 Multiparametric Probing of Microenvironment with Solvatochromic Fluorescent Dyes Elsevier: Holland, 2008, Vol. 450, pp. 37- 58.
49 Shemesh D. ; Sobolewski A. L. ; Domcke W. Phys. Chem. Chem. Phys. 2010, 12, 4899.
50 Qian J. ; Brouwer A. M. Phys. Chem. Chem. Phys. 2010, 12, 12562.
51 O'Regan B. C. ; Durrant J. R. Acc. Chem. Res. 2009, 42, 1799.
52 Fabregat-Santiago F. ; Garcia-Belmonte G. ; Mora-Séro I. ; Bisquert J. Phys. Chem. Chem. Phys. 2011, 13, 9083.
53 Bisquert J. ChemPhysChem 2011, 12, 1633.
[1] Guoxiao JIA,Shaoqing ZHANG,Liyan YANG,Chang HE,Huili FAN,Jianhui HOU. Development of Benzodithiophene-Based A-D-A Small Molecules with Different Acceptor End Groups for Efficient Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 76-83.
[2] Chiaki TOMINAGA,Dailo HIKOSOU,Issey OSAKA,Hideya KAWASAK. Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 805-811.
[3] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[4] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[5] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[6] Jun YUAN,Ye LIU,Can ZHU,Ping SHEN,Meixiu WAN,Liuliu FENG,Yingping ZOU. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1272-1278.
[7] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[8] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[9] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[10] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[11] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[12] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[13] Hai-Long CHEN,Hong-Tao BIAN,Jun-Rong ZHENG. Determining 3D Molecular Conformations with Ultrafast Multiple-Dimensional Vibrational Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 40-62.
[14] LIANG Gui-Jie, ZHONG Zhi-Cheng, XU Jie, XU Wei-Lin, CHEN Mei-Hua, ZHANG Zeng-Chang, LI Wen-Lian. Formation Mechanism, Structure Model and Electrochemical Performance of an In situ Cross Linking Hybrid Polymer Electrolyte Membrane[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2057-2064.
[15] ZHANG Ren-Kai, SUN Zhe, XIE Huan-Huan, LIANG Mao, XUE Song. New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1139-1145.