Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (4): 424-436    DOI: 10.3866/PKU.WHXB201709082
ARTICLE     
Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms
Jiao LIU1,3,Jicun HUO1,3,Min ZHANG2,*(),Xiandui DONG1,*()
1 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
2 Institute of New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(3965KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The ultrafast photoluminescence dynamics of three organic dyes—C210, C214, and C216—with different conjugated linkers containing various heteroatoms, such as bifuran, bithiophene and biselenophene, in combination with dihexyloxy-substituted triphenylamine (TPA) as the electron donor and cyanoacrylic acid (CA) as the electron acceptor have been studied systematically. The excited-state dynamics of the three dyes were investigated in detail in different media: tetrahydrofuran (THF) and toluene (PhMe) solutions, polymethyl methacrylate (PMMA) and polystyrene (PS) polymer films, and the surfaces of alumina and titania films in contact with an ionic liquid composite electrolyte. These dyes were found to feature dynamic Stokes shifts in all the aforementioned media, indicating stepwise intramolecular relaxations of the non-equilibrium excited state. The electron injection yield was distinctly lower for the non-equilibrium excited state than the equilibrium excited states, which can be ascribed to the competition between torsional relaxation and electron injection. A broad time scale over one magnitude of order was presented for electron injection due to the great energy losses originating from the multiple torsional relaxations, which should be controlled for future dye design and device development. Moreover, despite the shorter lifetimes of the equilibrium excited states for C210 and C216 than C214, the electron injection yields of equilibrium excited states for all the dyes are comparable due to the accelerated electron injection rate.



Key wordsSolar cells      Excited-state dynamics      Organic dyes      Ultrafast spectroscopy      Femtosecond fluorescence up-conversion     
Received: 15 August 2017      Published: 08 September 2017
MSC2000:  O644  
Fund:  the National Science Foundation of China(51473158);the National Science Foundation of China(91233206)
Corresponding Authors: Min ZHANG,Xiandui DONG     E-mail: zm2016@email.tjut.edu.cn;dxd@ciac.ac.cn
Cite this article:

Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms. Acta Physico-Chimica Sinca, 2018, 34(4): 424-436.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709082     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/424

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dye cm/(mol·cm-2·μm-1) τCal/(mA·cm-2) JSC/(mA·cm-2) VOC/mV FF/% PCE/%
C210 3.24×108 9.91±0.05 10.11±0.05 649±2 76.0± 0.5 5.0±0.1
C214 2.74×108 12.18±0.06 11.31± 0.06 685±2 73.8±0.3 5.7±0.1
C216 3.12×108 12.51±0.06 12.16±0.05 641±2 74.9±0.4 5.8±0.1
 
 
1 O'Regan B. C. ; Gr?tzel M. Nature 1991, 353, 737.
2 Mishra A. ; Fischer M. K. R. ; B?uerle P. Angew. Chem. Int. Ed. 2009, 48, 2474.
3 Imahori H. ; Umeyama T. ; Ito S. Acc. Chem. Res. 2009, 42, 1809.
4 Clifford J. N. ; Martínez-Ferrero E. ; Viterisi A. ; Palomares E. Chem. Soc. Rev. 2011, 40, 1635.
5 Wonneberger C. ; Li H. Adv. Mater. 2012, 24, 613.
6 Wu Y. ; Zhu W. Chem. Soc. Rev. 2013, 42, 2039.
7 Liang M. ; Chen J. Chem. Soc. Rev. 2013, 42, 3453.
8 Lin Y. Z. ; Huang C. H. ; Chang Y. J. ; Yeh C. W. ; Chin T. M. ; Chi K. M. ; Chou P. T. ; Watanabe M. ; Chow T. J. Tetrahedron 2014, 70, 262.
9 Li H. ; Yang Y. ; Hou Y. ; Tang R. ; Duan T. ; Chen J. ; Wang H. ; Han H. ; Peng T. ; Chen X. ; Li Q. ; Li Z. ACS Sustainable Chem. Eng. 2014, 2, 1776.
10 Kakiage K. ; Aoyama Y. ; Yano T. ; Oya K. ; Fujisawa J. I. ; Hanaya M. Chem. Commun. 2015, 51, 15894.
11 Yao Z. ; Zhang M. ; Li R. ; Yang L. ; Qiao Y. ; Wang P. Angew. Chem. Int. Ed. 2015, 127, 6092.
12 Yao Z. ; Wu H. ; Li Y. ; Wang J. ; Zhang J. ; Zhang M. ; Guo Y. ; Wang P. Energy Environ. Sci. 2015, 8, 3192.
13 Yao Z. ; Zhang M. ; Wu H. ; Yang L. ; Li R. ; Wang P. J. Am. Chem. Soc. 2015, 137, 3799.
14 Li H. ; Fang M. ; Xu T. ; Hou Y. ; Tang R. ; Chen J. ; Liu L. ; Han H. ; Peng T. ; Li Q. ; Li Z. Org. Chem. Front. 2016, 3, 233.
15 Yang L. ; Li Y. ; Chen S. ; Zhang J. ; Zhang M. ; Wang P. Acta Phys. -Chim. Sin. 2016, 32, 329.
15 杨林; 李阳; 陈淑; 张静; 张敏; 王鹏. 物理化学学报, 2016, 32, 329.
16 Weng X. L. ; Wang Y. ; Jia C. Y. ; Wan Z. Q. ; Chen X. M. ; Yao X. J. Acta Phys. -Chim. Sin. 2016, 32, 1990.
16 翁小龙; 王艳; 贾春阳; 万中全; 陈喜明; 姚小军. 物理化学学报, 2016, 32, 1990.
17 Xiao A. ; Lu H. ; Zhao Y. ; Luo G. G. Acta Phys. -Chim. Sin. 2016, 32, 2968.
17 肖岸; 卢辉; 赵阳; 骆耿耿. 物理化学学报, 2016, 32, 2968.
18 Li Z. G. ; Lu T. ; Gao H. ; Zhang Q. ; Li M. J. ; Ren W. ; Lu W. C. Acta Phys. -Chim. Sin. 2017, 33, 1789.
18 李重杲; 卢天; 高恒; 张庆; 李敏杰; 任伟; 陆文聪. 物理化学学报, 2017, 33, 1789.
19 Ren Y. ; Liu J. ; Zheng A. ; Dong X. ; Wang P. Adv. Sci. 2017, 1700099.
20 Rehm J. M. ; McLendon G. L. ; Nagasawa Y. ; Yoshihara K. ; Moser J. ; Gr?tzel M. J. Phys. Chem. 1996, 100, 9577.
21 Tachibana Y. ; Rubtsov I. V. ; Montanari I. ; Yoshihara K. ; Klug D. R. ; Durrant J. R. J. Photoch. Photobio. A 2001, 142, 215.
22 Luo L. ; Lo C. F. ; Lin C. Y. ; Chang I. J. ; Diau W. G. J. Phys. Chem. B 2006, 110, 410.
23 Martín C. ; Zió?ek M. ; Marchena M. ; Douhal A. J. Phys. Chem. C 2011, 115, 23183.
24 Adamo C. ; Jacquemin D. Chem. Soc. Rev. 2013, 42, 845.
25 Fakis M. ; Hrobárik P. ; Yushchenko O. ; SigmundováI. ; Koch M. ; Rosspeintner A. ; Stathatos E. ; Vauthey E. J. Phys. Chem. C 2014, 118, 28509.
26 Ai X. ; Guo J. ; Anderson N. A. ; Lian T. J. Phys. Chem. B 2004, 108, 12795.
27 Fakis M. ; Stathatos E. ; Tsigaridas G. ; Giannetas V. ; Persephonis P. J. Phys. Chem. C 2011, 115, 13429.
28 Yang L. ; Chen S. ; Zhang J. ; Wang J. ; Zhang M. ; Dong X. ; Wang P. J. Mater. Chem. A 2017, 5, 3514.
29 Li Y. ; Wang J. ; Yuan Y. ; Zhang M. ; Dong X. ; Wang P. Phys. Chem. Chem. Phys. 2017, 19, 2549.
30 Chen S. ; Yang L. ; Zhang J. ; Yuan Y. ; Dong X. ; Wang P. ACS Photonics 2017, 4, 165.
31 Li R. ; Zhang M. ; Yan C. ; Yao Z. ; Zhang J. ; Wang P. ChemSusChem 2015, 8, 97.
32 Yang L. ; Yao Z. ; Liu J. ; Wang J. ; Wang P. ACS Appl. Mater. Inter. 2016, 8, 9839.
33 Shank C. V. Science 1986, 233, 1276.
34 Fleming G. R. ; van Grondelle R. Current opinion in structural biology: Femtosecond spectroscopy of photosynthetic lightharvesting systems Elsevier: Holland, 1997, Vol. 7, pp. 738- 748.
35 McCamant D. W. ; Kukura P. ; Mathies R. A. J. Phys. Chem. A 2003, 107, 8208.
36 Trotzky S. ; Hoyer T. ; Tuszynski W. ; Lienau C. ; Parisi J. J. Phys. D: Appl. Phys. 2009, 42, 055105.
37 Li R. ; Lv X. ; Shi D. ; Zhou D. ; Cheng Y. ; Zhang G. ; Wang P. J. Phys. Chem. C 2009, 113, 7469.
38 Wang P. ; Zakeeruddin S. M. ; Comte P. ; Charvet R. ; Humphry-Baker R. ; Gr?tzel M. J. Phys. Chem. B 2003, 107, 14336.
39 Liu J. ; Li R. ; Si X. ; Zhou D. ; Shi Y. ; Wang Y. ; Jing X. ; Wang P. Energy Environ. Sci. 2010, 3, 1924.
40 Cai N. ; Wang Y. ; Xu M. ; Fan Y. ; Li R. ; Zhang M. ; Wang P. Adv. Funct. Mater. 2013, 23, 1846.
41 Zhang J. ; Yao Z. ; Cai N. ; Yang L. ; Xu M. ; Li R. ; Zhang M. ; Dong X. ; Wang P. Energy Environ. Sci. 2013, 6, 1604.
42 Snellenburg J. J. ; Laptenok S. P. ; Seger R. ; Mullen K. M. ; van Stokkum I. H. M. J. Stat. Softw. 2012, 49, 1.
43 Lanzani G. ; Nisoli M. ; De Silvestri S. ; Tubino R. Chemical Physics Letters: Femtosecond vibrational and torsional energy redistribution in photoexcited oligothiophenes Elsevier: Holland 1996, Vol. 251, pp. 339- 345.
44 Glasbeek M. ; Zhang H. Chem. Rev. 2004, 104, 1929.
45 Amdursky N. ; Erez Y. ; Huppert D. Acc. Chem. Res. 2012, 45, 1548.
46 Nelson T. ; Fernandez-Alberti S. ; Roitberg A. E. ; Tretiak S. Acc. Chem. Res. 2014, 47, 1155.
47 Oliver T. A. A. ; Lewis N. H. C. ; Fleming G. R. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 10061.
48 Klymchenko A. S. ; Demchenko A. R. Methods in Enzymology: Chapter 3 Multiparametric Probing of Microenvironment with Solvatochromic Fluorescent Dyes Elsevier: Holland, 2008, Vol. 450, pp. 37- 58.
49 Shemesh D. ; Sobolewski A. L. ; Domcke W. Phys. Chem. Chem. Phys. 2010, 12, 4899.
50 Qian J. ; Brouwer A. M. Phys. Chem. Chem. Phys. 2010, 12, 12562.
51 O'Regan B. C. ; Durrant J. R. Acc. Chem. Res. 2009, 42, 1799.
52 Fabregat-Santiago F. ; Garcia-Belmonte G. ; Mora-Séro I. ; Bisquert J. Phys. Chem. Chem. Phys. 2011, 13, 9083.
53 Bisquert J. ChemPhysChem 2011, 12, 1633.
[1] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 391-406.
[2] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 344-347.
[3] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[4] HUANG Yang, SUN Qing-De, XU Wen, HE Yao, YIN Wan-Jian. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1730-1751.
[5] ZHENG Jiang-Bo, CHEN Zhi-Ming, HU Zhi-Cheng, ZHANG Jie, HUANG Fei. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[6] LIU Ji-Chong, TANG Feng, YE Feng-Ye, CHEN Qi, CHEN Li-Wei. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1934-1943.
[7] CHEN Hai-Long, BIAN Hong-Tao, ZHENG Jun-Rong. Determining 3D Molecular Conformations with Ultrafast Multiple-Dimensional Vibrational Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 40-62.
[8] LIANG Gui-Jie, ZHONG Zhi-Cheng, XU Jie, XU Wei-Lin, CHEN Mei-Hua, ZHANG Zeng-Chang, LI Wen-Lian. Formation Mechanism, Structure Model and Electrochemical Performance of an In situ Cross Linking Hybrid Polymer Electrolyte Membrane[J]. Acta Physico-Chimica Sinca, 2012, 28(09): 2057-2064.
[9] ZHANG Ren-Kai, SUN Zhe, XIE Huan-Huan, LIANG Mao, XUE Song. New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination[J]. Acta Physico-Chimica Sinca, 2012, 28(05): 1139-1145.
[10] ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi. Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 78-84.
[11] LI Jing, SUN Ming-Xuan, ZHANG Xiao-Yan, CUI Xiao-Li. Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2011, 27(10): 2255-2268.
[12] SHI Ji-Fu, XU Gang, MIAO Lei, XU Xue-Qing. p-Type and pn-Type Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2011, 27(06): 1287-1299.
[13] LI Huan-Huan, CHEN Run-Feng, MA Cong, ZHANG Sheng-Lan, AN Zhong-Fu, HUANG Wei. Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells[J]. Acta Physico-Chimica Sinca, 2011, 27(05): 1017-1025.
[14] ZHUO Zu-Liang, ZHANG Fu-Jun, XU Xiao-Wei, WANG Jian, LU Li-Fang, XU Zheng. Photovoltaic Performance Improvement of P3HT:PCBM Polymer Solar Cells by Annealing Treatment[J]. Acta Physico-Chimica Sinca, 2011, 27(04): 875-880.
[15] YANG Fan, YU Long-Jiang, WANG Peng, AI Xi-Cheng, WANG Zheng-Yu, ZHANG Jian-Ping. Excitation Dynamics of the Light-Harvesting Complex 2 from Thermochromatium Tepidum[J]. Acta Physico-Chimica Sinca, 2010, 26(07): 2021-2030.