Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (5): 483-491    DOI: 10.3866/PKU.WHXB201709111
ARTICLE     
Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling
Yongquan ZHOU1,Yoshie SOGA2,Toshio YAMAGUCHI2,Yan FANG1,Chunhui FANG1,*()
1 Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai Province, P. R. China
2 Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180, Japan
Download: HTML     PDF(2131KB) Export: BibTeX | EndNote (RIS)      

Abstract  

X-ray scattering measurements were performed on 1.0 mol·dm-3 RbCl and CsCl aqueous solutions. The X-ray structure factors were subjected to empirical potential structure refinement to extract detailed structural information on hydrated Cl-, Rb+, Cs+, and ion association, as well as bulk water, in terms of the individual site-site pair correlation functions, coordination number distributions, and spatial density functions (three-dimensional structure). Cl- is found to have a relatively stable six-fold coordination of water molecules with a Cl--H2O distance of 0.321 nm, and without a significant cation effect on its local structure. Rb+ is surrounded on an average by 7.3 ± 1.4 water molecules with a Rb+-H2O distance of 0.297 nm, whereas 8.4 ± 1.6 water molecules hydrate Cs+ at a Cs+-H2O distance of 0.312 nm. It is likely that Rb+ has a stronger hydration shell than Cs+, as evidenced by the presence of the second hydration shell of the former. Contact ion-pairs are partially formed in both solutions and characterized by the Rb+-Cl- and Cs+-Cl- distances of 0.324 nm and 0.336 nm. The solvent-separated ion pairs for both ions are discernible at around 0.6 nm. Rb+ has a stronger electrostatic interaction and hence a relatively stronger ion association with Cl- than Cs+.



Key wordsRbCl      CsCl      Solution structure      X-ray scattering      EPSR     
Received: 07 August 2017      Published: 11 September 2017
O641  
Fund:  the Natural Science Foundation of Qinghai Province, China(2015-ZJ-945Q);Youth Innovation Promotion Association, CAS, China(2017467)
Corresponding Authors: Chunhui FANG     E-mail: fangch@isl.ac.cn
Cite this article:

Yongquan ZHOU,Yoshie SOGA,Toshio YAMAGUCHI,Yan FANG,Chunhui FANG. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling. Acta Phys. -Chim. Sin., 2018, 34(5): 483-491.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709111     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/483

System rRb-O(CNRb-O) Method System rCs-O(CNCs-O) Method
0.22-3.97 M RbСl17 0.315 (~7.5-6.1) MD 15.1-32.3 M CsF 18 0.32(8.03-5.54) XRD
4 M RbСl 19 0.305 (6.9) AXD 1.0-3.9 M CsI 18 0.31(6.73-5.13) XRD
1%-10% RbСl 20 ~0.285 (7.0-5.0) RMС 1.5-15.0 M CsCl 21 0.31(8.2-6.5) RMС
~2 M Rb+22 0.295 (6.59) AIMD 1Cs++63H2O 23 0.3013 (8.2~7.0) FPMD
1Rb++63H2O 23 0.283 (8.0-7.0) FPMD 0.1-0.9 M RbI 24 0.307 (/) XRD
0.1-0.9 M RbI 24 0.298 (/) XRD 1.5-2.5 M Cs2SO4 25 0.325 (6.0) XRD
 
System c/(mol·dm-3) d/(g·cm-3) μ/cm-1 V/nm3
Water / 0.997 1.12 0.03000
RbCl 0.9782 1.015 4.64 0.03104
CsCl 0.9506 1.118 3.51 0.03123
 
ε/(kJ·mol-1) σ/nm Mass Charge
Ow 44 0.65 0.316 16.00 -0.8476
Hw 44 0.00 0.00 1.00 0.4238
Rb+ 45 0.0005 0.560 85.468 1.000
Cs+ 45 0.0005 0.620 132.905 1.000
Cl- 45 0.71 0.402 35.453 -1.000
 
 
 
 
 
 
Interaction pairs r(Ⅰ, peak)/nm r-range/nm CN
water O(W)-O(W, Ⅰ) 0.279 0.234-0.345 4.8 ± 1.0
O(W)-O(W, Ⅱ) 0.453 0.348-0.567 19.8 ± 2.2
RbCl Rb-O(W, Ⅰ) 0.297 0.261-0.378 7.3 ± 1.4
Rb-O(W, Ⅱ) 0.489 0.378-0.591 18.7 ± 2.4
Cl-O(W) 0.321 0.288-0.369 5.9 ± 1.1
O(W)-O(W, Ⅰ) 0.273 0.234-0.324 3.8 ± 0.9
O(W)-O(W, Ⅱ) 0.390 0.327-0.558 20.6 ± 2.2
Rb-Cl 0.324 0.291-0.405 0.4 ± 0.4
CsCl Cs-O(W) 0.312 0.285-0.413 8.4 ± 1.6
Cl-O(W) 0.321 0.285-0.369 6.0 ± 1.1
O(W)-O(W, Ⅰ) 0.273 0.234-0.324 3.8 ± 0.9
O(W)-O(W, Ⅱ) 0.390 0.327-0.567 19.7 ± 2.2
Cs-Cl 0.336 0.300-0.446 0.3 ± 0.4
 
 
 
 
 
1 Xu C. ; Wang J. C. ; Chen J. Solvent Extr. Ion Exc. 2012, 30, 623.
2 Lei H. ; Li S. ; Zhai Q. ; Zhang H. ; Jiang Y. ; Hu M. Acta Phys. -Chim. Sin. 2012, 28, 1599.
2 雷红; 李淑妮; 翟全国; 张晖英; 蒋育澄; 胡满成. 物理化学学报, 2012, 28, 1599.
3 Zhang H. ; Wang S. ; Wang R. ; Lin C. ; Zhang X. ; Wang X. Acta Phys. -Chim. Sin. 2000, 16, 952.
3 张惠源; 王淑兰; 王榕树; 林灿生; 张先业; 王孝荣. 物理化学学报, 2000, 16, 952.
4 Izatt R. M. ; Rytting J. H. ; Nelson D. P. ; Haymore B. L. Science 1969, 164, 443.
5 Maleknia S. ; Brodbelt J. J.Am. Chem. Soc. 1993, 115, 2837.
6 Glendening E. D. ; Feller D. ; Thompson M. A. J.Am. Chem. Soc. 1994, 116, 10657.
7 Inokuchi Y. ; Ebata T. ; Rizzo T. R. ; Boyarkin O. V. J.Am. Chem. Soc. 2014, 136, 1815.
8 Rodriguez J. D. ; Vaden T. D. ; Lisy J. M. J.Am. Chem. Soc. 2009, 131, 17277.
9 Inokuchi Y. ; Boyarkin O. V. ; Kusaka R. ; Haino T. ; Ebata T. ; Rizzo T. R. J.Phys. Chem. A 2012, 116, 4057.
10 Richens D. T. The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements Wiley: Chichester, UK 1997, pp. 24-68.
11 Fawcett W. R. Liquids, Solutions, and Interfaces from Classical Macroscopic Descriptions to Modern Microscopic Details Oxford Univesity Press: New York, USA 2004, pp. 204-254.
12 Hao L. ; Zhao Y. ; Zhao J. ; Jiang X. ; Yang Z. ; Zhao D. Acta Phys. -Chim. Sin. 2016, 32, 2921.
12 赫兰兰; 郭宇; 赵健; 姜新蕊; 杨忠志; 赵东霞. 物理化学学报, 2016, 32, 2921.
13 Galib M. ; Baer M. D. ; Skinner L. B. ; Mundy C. J. ; Huthwelker T. ; Schenter G. K. ; Benmore C. J. ; Govind N. ; Fulton J. L. J.Chem. Phys. 2017, 146, 084504.
14 Ohtaki H. ; Radnai T. Chem. Rev. 1993, 93, 1157.
15 Cummings S. ; Enderby J. E. ; Neilson G. W. ; Newsome J. R. ; Howe R. A. ; Howells W. S. ; Soper A. K. Nature 1980, 287, 714.
16 Smirnov P. R. ; Trostin V. N. Russ. J. Gen. Chem. 2007, 77, 2101.
17 Du H. ; Rasaiah J. C. ; Miller J. D. J.Phys. Chem. B 2007, 111, 209.
18 Mile V. ; Gereben O. ; Kohara S. ; Pusztai L. J.Phys. Chem. B 2012, 116, 9758.
19 Ramos S. ; Barnes A. C. ; Neilson G. W. ; Capitan M. J.Chem. Phys. 2000, 258, 171.
20 Ildikó H. ; László P. J. Phys.: Condens. Matter 2007, 19, 335208.
21 Mile V. ; Pusztai L. ; Dominguez H. ; Pizio O. J.Phys. Chem. B 2009, 113, 10760.
22 Buda A. ; Ali S. M. J.Mol. Liq. 2013, 179, 34.
23 Ikeda T. ; Boero M. J.Chem. Phys. 2012, 137, 041101.
24 Mä hler J. ; Persson I. Inorg. Chem. 2011, 51, 425.
25 Ling L. ; Fang C. ; Fang Y. Salt Lake Res. 2006, 15, 45.
25 林联君; 房春晖; 房艳; 秦绪锋. 盐湖研究, 2006, 15, 45.
26 Ansell S. ; Barnes A. C. ; Mason P. E. ; Neilson G. W. ; Ramos S. Biophys. Chem. 2006, 124, 171.
27 Neilson G. W. ; Mason P. E. ; Ramos S. ; Sullivan D. Philos. Trans. R. Soc. London, Ser. A 2001, 359, 1575.
28 Zhou Y. ; Fang C. ; Fang Y. ; Zhu F. ; Tao S. ; Xu S. Russ. J. Phys. Chem. A 2012, 86, 1236.
29 Thorpe S. J. L. ; Thorpe M. F. Local Structure from Diffraction Kluwer Academic Publishers: New York, USA 2002, pp. 59-85.
30 Soper A. K. Chem. Phys. 1996, 202, 295.
31 Soper A. K. Phys. Rev. B 2005, 72, 104204.
32 Soper A. K. Mol. Simul. 2012, 38, 1171.
33 Yamaguchi T. ; Fujimura K. ; Uchi K. ; Yoshida K. ; Katayama Y. J.Mol. Liq. 2012, 176, 44.
34 Shalaev E. ; Soper A. K. J.Phys. Chem. B 2016, 120, 7289.
35 Mancinelli R. ; Botti A. ; Bruni F. ; Ricci M. A. ; Soper A. K. J. Phys. Chem. B 2007, 111, 13570.
36 Bowron D. T. ; Moreno S. D. Coord. Chem. Rev. 2014, 277, 2.
37 Krogh-Moe J. Acta Crystallogr. 1956, 9, 951.
38 Norman N. Acta Crystallogr. 1957, 10, 370.
39 Prince E. International Tables for Crystallography Kluwer Academic Publishers: London, UK 2004, pp. 230-235, 255, 555-556, 658.
40 Hubbell J. H. ; Veigele W. J. ; Briggs E. A. ; Brown R. T. ; Cromer D. T. ; Howerton R. J. J. Phys. Chem. Ref. Data 1975, 4 (3), 471.
41 Kaplow R. ; Strong S. L. ; Averbach B. L. Phys. Rev. 1965, 138, A1336.
42 Johansson G. Sandström M. Chemica Scripta 1973, 4, 195.
43 Zhou Y. ; Fang C. ; Fang Y. Acta Phys. -Chim. Sin. 2010, 26, 2323.
43 周永全; 房春晖; 房艳. 物理化学学报, 2010, 26, 2323.
44 Yamaguchi T. ; Lee K. ; Yamauchi M. ; Fukuyama N. ; Yoshida K. Bunseki Kagaku 2015, 64, 295.
45 Jensen K. P. ; Jorgensen W. L. J. Chem. Theory Comput. 2006, 2, 1499.
46 D'Angelo P. ; Persson I. Inorg. Chem. 2004, 43, 3543.
47 Smirnov P. R. ; Grechin O. V. Russ. J. Coord. Chem. 2013, 39, 685.
48 Soper A. K. Chem. Phys. 2000, 258, 121.
49 Soper A. K. J.Chem. Phys. 1994, 101, 6888.
50 Marcus Y. Chem. Rev. 2009, 109, 1346.
51 Chen T. ; Hefter G. ; Buchner R. J.Phys. Chem. A 2003, 107, 4025.
[1] Jun-Sheng YUAN,Zi-Yu LIU,Fei LI,Shen-Yu LI. Study of the Hydrated Structure of KCl and NaCl Mixed Solutions Using X-ray Diffraction and Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1143-1150.
[2] CHAI Xiao-Yan, ZHU Cai-Zhen, HE Chuan-Xin, ZHANG Guang-Zhao, LIU Jian-Hong. Modification of Microvoid Defects in Polyacrylonitrile-Based Carbon Fibers by a Liquid Oligomer of Acrylonitrile[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 753-760.
[3] LEI Hong, LI Shu-Ni, ZHAI Quan-Guo, ZHANG Hui-Ying, JIANG Yu-Cheng, HU Man-Cheng. Solubility, Density and Refractive Index for the Ternary Systems of 1,2-Propanediol, MCl (M=Na, K, Rb, Cs) and H2O at 298.15 and 308.15 K[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1599-1607.
[4] ZHOU Yong-Quan, FANG Chun-Hui, FANG Yan. Structure of Supersaturated Aqueous SodiumPentaborate Solution[J]. Acta Phys. -Chim. Sin., 2010, 26(09): 2323-2330.
[5] HUANG Fei-Juan, DU Wei-Hong, WANG Bao-Huai. Solution Structure of Conomarphin, a Novel Conopeptide Containing D-Amino Acid at pH 5[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1558-1562.
[6] FENG Wang-Sheng; FANG Yan; XU Ji-Xiang; FANG Chun-Hui; JIA Quan-Jie; WANG Huan-Hua; JIANG Xiao-Ming. Application of Gaussian Multi-Peak Fitting to Radial Distribution Function[J]. Acta Phys. -Chim. Sin., 2008, 24(03): 497-501.
[7] SUI Zhen-Ming;CHEN Xiao;WANG Lu-Yan;XU Li-Mei;YANG Chun-Jie. Study on the Doping and Interactions of Metal Nanoparticles in the Lyotropic Liquid Crystals[J]. Acta Phys. -Chim. Sin., 2006, 22(06): 737-743.
[8] XU Hua; XU Yao; LI Zhi-Hong. Study of the Microstructure of TEOS-MTES Based Sol by SAXS[J]. Acta Phys. -Chim. Sin., 2005, 21(03): 300-305.
[9] Shi Lei, Zhang Xiao-Gang, Zhang Xi-Feng, Yang Guan-Ying, Han Bu-Xing, Yan Hai-Ke. Study of Molecular lnteraction in Mixed Supercritical Fluids by Molecular Simulation and Partial Molar Volume Measurement[J]. Acta Phys. -Chim. Sin., 2000, 16(01): 31-35.
[10] Li Lin-Wei, Chu De-Ying, Liu Rui-Lin. Determinstion of Standard Transfer Entropies of RbCl from H2O to Mixtures of H2O-DMF[J]. Acta Phys. -Chim. Sin., 1999, 15(03): 265-268.
[11] Li Lin-Wei, Chu De-Ying, Liu Rui-Lin. Determination of Activity Coefficients of RbCl in (H2O-DMF) Mixed Solvents at 283.15 to 318.15K[J]. Acta Phys. -Chim. Sin., 1998, 14(08): 691-697.
[12] Han Fu-Tian,Chen Ji-Zhou,Wang Jun-Qiao,Wu Xuan-Chi,Bin Ren-Mao. Strcuture of Oriented Non-crystalline PET Studied with Two-dimensional WAXS Intensity by Symmetrical Transmission[J]. Acta Phys. -Chim. Sin., 1996, 12(01): 39-43.
[13] Cheng Zhao-Nian,Ding Hong,Lei Yu,Xu Li. A Study of Molecular Dynamics Simulation for Rubidium Chloride Melting[J]. Acta Phys. -Chim. Sin., 1995, 11(10): 890-895.
[14] Zhu Xiao-Lei,Jin An-Ding. A Modified Xa-SCF Calculation of the Structure Parameters of Atoms[J]. Acta Phys. -Chim. Sin., 1995, 11(07): 659-662.
[15] Ren Ji-Min; Niu Chun-Ji; Pei Feng-Kui; Wang Wen-Yun; Ni Jia-Zuan. 13C and 1H NMR Studies of Solution Structure of Lanthanide Complex with Glycyl-Glycine[J]. Acta Phys. -Chim. Sin., 1992, 8(02): 270-273.