Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (4): 344-347    DOI: 10.3866/PKU.WHXB201709112
Special Issue: Nonfullerene Organic Solar Cells
COMMUNICATION     
Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells
Shichao ZHOU1,2,Guitao FENG2,Dongdong XIA2,Cheng LI2,*(),Yonggang WU1,*(),Weiwei LI2,*()
1 College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei Province, P. R. China
2 CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download: HTML     PDF(589KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Non-fullerene organic solar cells are of broad and current interest in the field of organic solar cells, and show promising application in high performance solar cells. When designing conjugated molecules as non-fullerene materials, several parameters, such as absorption, energy levels, charge transport, and crystallinity should be considered. Among them, absorption spectra are an important parameter that determine the efficiency of sun-light harvesting. In this work, we explore a new near-infrared electron acceptor naphthalenediimide-porphyrin (NDI-Por) by using electron-donating porphyrin as the core, and four NDI as end groups with ethynyl as linkers attached to the meso-position of porphyrin. This star-shaped molecule exhibits absorption spectra up to 900 nm. NDI-Por was incorporated into non-fullerene solar cells as an electron acceptor, and together with a wide-band gap polymer donor, an initial power conversion efficiency of 1.80% could be achieved. In particular, the solar cells exhibit a broad photo-response from 300 to 900 nm. Our results demonstrate that it is an efficient strategy to incorporate porphyrin into conjugated molecules to realize non-fullerene materials with near-infrared absorption spectra.



Key wordsNon-fullerene organic solar cells      Porphyrin      Naphthalenediimide      Electron acceptor      Near-infrared     
Received: 11 August 2017      Published: 11 September 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51773207);the National Natural Science Foundation of China(21574138);the National Natural Science Foundation of China(51603209);the National Natural Science Foundation of China(91633301);the National Natural Science Foundation of China(21474026);the Strategic Priority Research Program(XDB12030200)
Corresponding Authors: Cheng LI,Yonggang WU,Weiwei LI     E-mail: licheng1987@iccas.ac.cn;wuyonggang@hbu.edu.cn;liweiwei@iccas.ac.cn
Cite this article:

Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709112     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/344

Fig 1 The chemical structures (a) naphthalenebisimide – porphyrin based star-shaped electron acceptor NDI-Por and (b) the donor polymer PBDB-T.
Fig 2 (a) Absorption spectra of NDI-Por in CHCl3 solution and in a thin film, PBDB-T in a thin film, (b) cyclic voltammogram of the NDI-Por thin film.
Fig 3 (a) JV characteristics in the dark (dashed line) and under illumination with white light (solid line), (b) EQE of the optimized PBDB-T:NDI-Por solar cells.
Fig 4 AFM height image (a) and phase image (b) of PBDB-T:NDI-Por blend film.
1a Li Y. Acc. Chem. Res. 2012, 45, 723.
1b Zhao Y. F. ; Zou W. J. ; Li H. ; Lu K. ; Yan W. ; Wei Z. X. Chin. J. Polym. Sci. 2017, 35, 261.
1c Krebs F. C. ; Espinosa N. ; H?sel M. ; S?ndergaard R. R. ; J?rgensen M. Adv. Mater. 2014, 26, 29.
2 Lu L. ; Zheng T. ; Wu Q. ; Schneider A. M. ; Zhao D. ; Yu L. Chem. Rev. 2015, 115, 12666.
3a Yu G. ; Gao J. ; Hummelen J. C. ; Wudl F. ; Heeger A. J. Science 1995, 270, 1789.
3b Wienk M. M. ; Kroon J. M. ; Verhees W. J. H. ; Knol J. ; Hummelen J. C. ; van Hal P. A. ; Janssen R. A. J. Angew. Chem. Int. Ed. 2003, 42, 3371.
4a Lin Y. ; Wang J. ; Zhang Z. G. ; Bai H. ; Li Y. ; Zhu D. ; Zhan X. Adv. Mater. 2015, 27, 1170.
4b Jiang W. ; Ye L. ; Li X. ; Xiao C. ; Tan F. ; Zhao W. ; Hou J. ; Wang Z. Chem. Commun. 2014, 50, 1024.
4c Nielsen C. B. ; Holliday S. ; Chen H. Y. ; Cryer S. J. ; McCulloch I. Acc. Chem. Res. 2015, 48, 2803.
4d Zhang S. Q. ; Hou J. H. Acta Phys. -Chim. Sin. 2017, 33, 2327.
4d 张少青; 侯剑辉. 物理化学学报, 2017, 33, 2327.
4e Yang F. ; Li C. ; Feng G. ; Jiang X. ; Zhang A. ; Li W. Chin. J. Polym. Sci. 2017, 35, 239.
4f Zhao R. Y. ; Dou C. D. ; Liu J. ; Wang L. X. Chin. J. Polym. Sci. 2017, 35, 198.
4g Shao R. ; Yang X. B. ; Yin S. W. ; Wang W. L. Acta Chim. Sin. 2016, 74, 676.
4g 邵绒; 杨鑫博; 尹世伟; 王文亮. 化学学报, 2016, 74, 676.
4h Liu Y. ; Zhang Z. ; Feng S. ; Li M. ; Wu L. ; Hou R. ; Xu X. ; Chen X. ; Bo Z. J. Am. Chem. Soc. 2017, 139, 3356.
5 Zhao W. ; Li S. ; Yao H. ; Zhang S. ; Zhang Y. ; Yang B. ; Hou J. J. Am. Chem. Soc. 2017, 139, 7148.
6a Liu J. ; Chen S. ; Qian D. ; Gautam B. ; Yang G. ; Zhao J. ; Bergqvist J. ; Zhang F. ; Ma W. ; Ade H. ; Ingan s O. ; Gundogdu K. ; Gao F. ; Yan H. Nat. Energy 2016, 1, 16089.
6b Meng D. ; Sun D. ; Zhong C. ; Liu T. ; Fan B. ; Huo L. ; Li Y. ; Jiang W. ; Choi H. ; Kim T. ; Kim J. Y. ; Sun Y. ; Wang Z. ; Heeger A. J. J. Am. Chem. Soc. 2016, 138, 375.
6c Jiang X. ; Xu Y. ; Wang X. ; Yang F. ; Zhang A. ; Li C. ; Ma W. ; Li W. Polym. Chem. 2017, 8, 3300.
7a Lin Y. ; He Q. ; Zhao F. ; Huo L. ; Mai J. ; Lu X. ; Su C. J. ; Li T. ; Wang J. ; Zhu J. ; Sun Y. ; Wang C. ; Zhan X. J. Am. Chem. Soc. 2016, 138, 2973.
7b Cheng P. ; Zhang M. ; Lau T. K. ; Wu Y. ; Jia B. ; Wang J. ; Yan C. ; Qin M. ; Lu X. ; Zhan X. Adv. Mater. 2017, 29, 1605216.
7c Yang F. ; Li C. ; Lai W. ; Zhang A. ; Huang H. ; Li W. Mater. Chem. Front. 2017, 1, 1389.
7d Yang Y. ; Zhang Z. G. ; Bin H. ; Chen S. ; Gao L. ; Xue L. ; Yang C. ; Li Y. J. Am. Chem. Soc. 2016, 138, 15011.
8 Lin Y. ; Zhao F. ; Wu Y. ; Chen K. ; Xia Y. ; Li G. ; Prasad S. K. K. ; Zhu J. ; Huo L. ; Bin H. ; Zhang Z. G. ; Guo X. ; Zhang M. ; Sun Y. ; Gao F. ; Wei Z. ; Ma W. ; Wang C. ; Hodgkiss J. ; Bo Z. ; Ingan s O. ; Li Y. ; Zhan X. Adv. Mater. 2017, 29, 1604155.
9 Zhang A. ; Li C. ; Yang F. ; Zhang J. ; Wang Z. ; Wei Z. ; Li W. Angew. Chem. Int. Ed. 2017, 56, 2694.
10a Yen W. N. ; Lo S. S. ; Kuo M. C. ; Mai C. L. ; Lee G. H. ; Peng S. M. ; Yeh C. Y. Org. Lett. 2006, 8, 4239.
10b Guo Y. ; Zhang A. ; Li C. ; Li W. ; Zhu D Chin. Chem. Lett 2017.
11 Liu Y. ; Zhang L. ; Lee H. ; Wang H. W. ; Santala A. ; Liu F. ; Diao Y. ; Briseno A. L. ; Russell T. P. Adv. Energy Mater. 2015, 5, 1500195.
[1] Ren-Jun MA,Qian-Jin GUO,Bo-Xuan LI,An-Dong XIA. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2191-2198.
[2] Nai-En SHI,Chuan-Yuan SONG,Jun ZHANG,Wei HUANG. Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2447-2461.
[3] YIN Hai-Feng, ZHANG Hong, YUE Li. Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1049-1054.
[4] LIU Huan, ZANG Na, ZHAO Fang-Yao, LIU Kun, LI Yue, RUAN Wen-Juan. Synthesis and Nonlinear Optical Properties of Porphyrin-Salen Type Homo- and Hetero-Binuclear Metal Complexes[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1801-1809.
[5] YANG Le-Le, LIU Jia, LI Yue, LIU Kun, RUAN Wen-Juan. Molecular Recognition of Glycoconjugated Porphyrin with Chiral Amino Acid Methyl Ester[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1877-1885.
[6] GU Lai-Yuan, GAO Bao-Jiao, FANG Xiao-Lin. Characterization of Immobilized Composite Catalysts of Cationic Metalloporphyrin and Heteropoly Anion in Oxidation of Ethyl Benzene by Molecular Oxygen[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 191-198.
[7] WANG Guan-Yao, YAN Wei-Wei, ZHANG Xiao-Hong, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis and Spectral Properties of Salen-Porphyrin Type Homo- and Hetero-Binuclear Complexes with π-Conjugate Configuration[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2774-2782.
[8] PENG Yu-Ling, WANG Shu-Jun, FU Li, ZHANG Cheng-Gen, LIU Xin-Gang. Synthesis of Tailed Porphyrin Modified with Nicotinic Acid and Interactions with Human Serum Albumin[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1054-1062.
[9] XU Hui-Ying, WANG Wei. Interaction between Mg-Porphyrin and Nitrogen, Oxygen Heterocyclic Compounds[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2565-2570.
[10] ZHAO Ping, XU Lian-Cai, MA Li. Spectral Research into Intramolecular Photoinduced Electron Transfer of Porphyrin-Anthraquinone Hybrids[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2541-2546.
[11] XIAO Quan-Lan, MENG Jian-Xin, XIE Li-Juan, ZHANG Rui. Near-Infrared Luminescence Enhancement by Co-Doped Bi3+ in YVO4:Yb3+[J]. Acta Phys. -Chim. Sin., 2011, 27(10): 2427-2431.
[12] ZHANG Xiao-Hong, GUO Hong-Rui, JIAO Zhi, YAN Wei-Wei, RUAN Wen-Juan, ZHU Zhi-Ang. Weak Interactions in Asymmetric Porphyrin Systems[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 774-780.
[13] ZHONG Ai-Guo, HUANG Ling, LI Bai-Lin, JIANG Hua-Jiang, LIU Shu-Bin. Structure, Spectroscopy and Reactivity Properties of Helically Chiral Metal(II)-Bisdipyrrin Complexes[J]. Acta Phys. -Chim. Sin., 2010, 26(10): 2763-2771.
[14] ZHANG Xiao-Hong, JIAO Zhi, YAN Wei-Wei, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis and Nonlinear Optical Properties of Porphyrin Modified by Imidazole and Its Zinc, Copper Complexes[J]. Acta Phys. -Chim. Sin., 2010, 26(03): 701-706.
[15] LI Ye, HAN Wei-Wei, LIAO Ming-Xia. Spectroscopic and Crystal Structural Analyses of Zinc (II) Tetraphenylporphyrin J-aggregates[J]. Acta Phys. -Chim. Sin., 2009, 25(12): 2493-2500.