Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (4): 391-406    DOI: 10.3866/PKU.WHXB201709131
Special Issue: Nonfullerene Organic Solar Cells
FEATURE ARTICLE     
Morphology Control of Non-fullerene Blend Systems Based on Perylene
Jie HAN1,Qiuju LIANG2,3,Yi QU1,4,*(),Jiangang LIU2,*(),Yanchun HAN2,*()
1 State Key Laboratory of High Power Semiconductor Laser; Changchun University of Science and Technology, Changchun 130022, P. R. China
2 State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
3 University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
4 College of Physics & Electronic Engineering; Hainan Normal University, Haikou 571158, P. R. China
Download: HTML     PDF(5185KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, the development of perylene diimide derivative (PDI)-based non-fullerene organic solar cells has been extensively studied. These solar cells exhibit unique advantages such as complementary light absorption, tunable energy levels, excellent electron transport properties, and relatively low cost. However, the strong π-π stacking between the PDI molecules tends to induce an uncontrolled phase separation structure, large domain size, and an unmanageable mixed phase, leading to severe geminate and non-geminate recombination and restriction of the final power conversion efficiency of the non-fullerene-based systems. In this work, it was found that one of the most important parameters that helps regulate phase structure is the molecular diffusion rate. By tuning the thermal annealing and liquid-solid phase separation and blend ratio, the phase-separated structure could be adjusted. Further, the domain size of blend systems with different compatibilities was regulated by balancing the π-π and charge transfer interactions. In addition, the amount of the intermixed phase was controlled by tuning the solubility parameter difference (Δδ) between the solvent and the solute.



Key wordsSolar cells      Nonfullerene      Morphology control      Phase separation      Domain size      Intermixed phase     
Received: 11 August 2017      Published: 13 September 2017
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(51573185);the National Natural Science Foundation of China(21334006);the National Natural Science Foundation of China(21474113);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12020300)
Corresponding Authors: Yi QU,Jiangang LIU,Yanchun HAN     E-mail: 2686566673@qq.com;niitawh@ciac.ac.cn;ychan@ciac.ac.cn
Cite this article:

Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709131     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/391

Fig 1 (a) The structure of organic solar cells; (b) the scheme of organic solar cells work processes.
Fig 2 Phase diagram of p-DTS(FBTTh2)2/EP-PDI blend films at different ratios and TA treated at different temperatures for 10 min46.
Fig 3 (a) Fluorescence spectra of p-DTS(FBTTh2)2/EP-PDI blend films at 6 : 4 TA at different temperature for 10 min; (b) evolution of fluorescence intensity at 620 and 725 nm of p-DTS(FBTTh2)2/EP-PDI blend films at 6 : 4 TA treated at different temperature46.
D:A 6 : 4 VOC/V Jsc/(mA·cm-2) FF PCE/%
Pristine0.211.960.340.14
60 ℃0.485.540.250.68
70 ℃0.515.930.381.16
80 ℃0.565.410.481.46
90 ℃0.667.000.452.09
100 ℃0.798.730.594.06
110 ℃0.809.050.594.25
120 ℃0.797.730.593.57
130 ℃0.636.670.562.42
140 ℃0.576.300.411.48
150 ℃0.575.920.391.31
Table 1 Device parameters of p-DTS(FBTTh2)2/EP-PDI of 6 : 4 ratio subjected to TA at different temperatures for 10 min46.
Fig 4 TEM and AFM images of P3HT/EP-PDI (1 : 1) blend films prepared by using different concentrations of the solvent additive CN in CB solutions56. (a, a′) without CN; (b, b′) 0.5% CN; (c, c′) 0.75% CN; (d, d′) 1.0% CN; (e, e′) 1.25% CN; (f, f′) 1.5% CN. The insets of TEM images show the corresponding SAED patterns. The bottom panels show the typical cross-sectional height profiles of P3HT/EP-PDI blend films prepared under different conditions.
Fig 5 (a) GIXD patterns of the P3HT/EP-PDI (1:1) blend films after acetone-soaking treatment. The films were prepared by using different concentrations of the CN additive in CB solutions. (b) Plots of the P3HT diffraction peak intensity and the crystallite size (La) corresponding to the (100) plane versus the concentration of CN56. The inset illustrates the lamellar supramolecular structures formed by P3HT chains.
D:A 1 : 1 VOC/V Jsc/(mA·cm-2) FF PCE/%
Without CN0.260.260.410.03
0.5% CN0.330.660.460.10
0.75% CN0.381.450.410.23
1% CN0.351.270.380.17
1.25% CN0.280.160.260.01
Table 2 Photovoltaic properties of P3HT/EP-PDI (1 : 1) blend solar cells fabricated with different concentrations of the CN additive56.
Fig 6 TEM and AFM (5 mm × 5 mm) height images of (a, a′) as deposited, (b, b′) CB-SVA treated, (c, c′) ODCB-SVA treated, (d, d′) EA-SVA treated and (e, e′) TA treated p-DTS(FBTTh2)2/EP-PDI (1 : 1) blend films. The insets of TEM images show the corresponding SAED patterns67.
Fig 7 Ex situ in-plane XRD of p-DTS(FBTTh2)2/EP-PDI (1 : 1) blend films after post-treatments. Plots of intermolecular π–π crystallite size (La) in blend films as a function of annealing time in the direction of in-plane67. (a and c) CB-SVA post-treatment, (b and d) TA post-treatment. The peaks corresponding to the ππ stacking of p-DTS(FBTTh2)2 and EP-PDI were used for calculation, respectively.
Post-treatment VOC/V Jsc/(mA·cm-2) FF PCE/%
Without treatment0.680.390.400.11
CB-SVA0.766.750.593.02
ODCB-SVA0.746.890.532.72
EA-SVA0.775.450.461.92
TA0.635.230.551.82
Table 3 Photovoltaic properties of p-DTS(FBTTh2)2/ EP-PDI (1 : 1) solar cells processed under different post-treatment methods67.
Solvent Tb/℃ δ/MPa1/2 Solubility/(mg?mL-1)
Small and Hoya) Fedorsb) PTB7 p-DTS(FBTTh2)2 EP-PDI
DIO 333 19.7 20.1 < 0.01 < 1 < 1
ODT 270 18.8 19.2 < 0.01 < 1 < 1
BF 173 22.9 24.4 < 0.01 < 0.01 > 50
BT 221 21.8 25.9 > 1 > 20 > 50
CN 259 21.9 24.4 > 50 > 50 > 100
Table 4 Boiling points (Tb) of five different SAs and the difference in solubility parameter between SAs and EP-PDI material84.
Fig 8 TEM images and corresponding SAED patterns of BHJ films cast from PTB7/EP-PDI (1 : 2) blended films84. (a) without additive; (b) with 0.75% DIO; (c) with 0.75% ODT; (d) with 0.75% CN; (e) with 0.75% BT; (f) with 0.4% BF.
Fig 9 (a) Absorption spectra and (b) GIXD patterns of the PTB7/EP-PDI blended films with different SAs84.
Solvent system VOC/V Jsc/(mA·cm-2) FF PCE/%
CB0.250.3100.260.020
CB + 0.4% BF0.692.9210.300.611
CB + 0.75% BT0.714.0110.421.205
CB + 0.75% CN0.724.9270.471.650
Table 5 Photovoltaic properties of PTB7/EP-PDI (1 : 1) solar cells processed with different SAs84.
Fig 10 TEM images and corresponding SAED patterns of BHJ films cast from p-DTS(FBTTh2)2/EP-PDI (1 : 1) blended films 84. (a) without additive; (b) with 0.40% DIO; (c) with 0.75% ODT; (d) with 1.0% CN; (e) with 0.75% CN; (f) with 1.0% BT; (g) with 1.0% BF.
Fig 11 (a) Absorption spectra and (b) GIXD patterns of the p-DTS(FBTTh2)2/EP-PDI blended films with different SAs 84.
Solvent system VOC/V Jsc/(mA·cm-2) FF PCE/%
CB0.680.6800.390.177
CB + 0.4% DIO0.766.8630.542.816
CB + 0.75% ODT0.776.5150.562.805
CB + 1.0% CN0.775.7630.431.922
CB + 0.75% CN0.752.4690.390.727
CB + 1.0% BT0.610.1280.270.021
CB + 1.0% BF0.730.0800.240.014
Table 6 Photovoltaic properties of F-DTS/EP-PDI (1 : 2) solar cells processed with different SAs84.
1 He Z. C. ; Zhong C. M. ; Su S. J. ; Xu M. ; Wu H. B. ; Cao Y. Nat. Photon. 2012, 6, 591.
2 You J. B. ; Dou L. T. ; Yoshimura K. ; Kato T. ; Ohya K. ; Moriarty T. ; Emery K. ; Chen C. C. ; Gao J. ; Li G. ; Yang Y. Nat. Commun. 2013, 4, 1446.
3 Li G. F. ; Zuo Y. ; Chen L. ; Zhang J. D. ; Yan D. H. ; Qin D. S. Acta Polym. Sin. 2013, 13, 183.
3 李贵芳; 左阳; 陈磊; 张吉东; 闫东航; 秦大山. 高分子学报, 2013, 13, 183.
4 Feng Y. ; Su Z. X. ; Sun L. ; liu S. G. ; Diao K. S. ; Zhang W. M. Acta Polym. Sin. 2014, 1613.
4 冯宇; 苏智兴; 孙丽; 刘绍刚; 刁开盛; 张卫民. 高分子学报, 2014, 1613.
5 Li Y. F. Acta Phys. -Chim. Sin. 2017, 33, 447.
5 李永舫. 物理化学学报, 2017, 33, 447.
6 Luo H. W. ; Liu Z. T. Chin.Chem.Lett. 2016, 27, 1283.
7 Shen X. X. ; Han G. C. ; Yi Y. P. Chin.Chem.Lett. 2016, 27, 1453.
8 Qin Y. P. ; Chen Y. ; Cui Y. ; Zhang S. Q. ; Yao H. F. ; Huang J. ; Li W. N. ; Zheng Z. ; Hou J. H. Adv. Mater. 2017, 29, 1606340.
9 Zhao W. C. ; Li S. S. ; Zhang S. Q. ; Liu X. Y. ; Hou J. H. Adv. Mater. 2017, 29, 1604359.
10 Kim Y. ; Cook S. ; Tuladhar S. M. ; Choulis S. A. ; Nelson J. ; Durrant J. R. ; Bradley D. D. C. ; Giles M. ; Mcculloch I. ; Ha C. S. ; Ree M. Nature Mater. 2006, 5, 197.
11 Bijleveld J. C. ; Zoombelt A. P. ; Mathijssen S. G. J. ; Wienk M. M. ; Turbiez M. ; de Leeuw D. M. ; Janssen R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.
12 Reshma L. ; Santhakumar K. Org. Electron. 2017, 47, 35.
13 Bi P. Q. ; Zheng F. ; Yang X. Y. ; Niu M. S. ; Feng L. ; Qin W. ; Hao X. T. J. Mater. Chem. A 2017, 5, 12120.
14 Chen S. S. ; Yao H. T. ; Li Z. K. ; Awartani O. M. ; Liu Y. H. ; Wang Z. ; Yang G. F. ; Zhang J. Q. ; Ade H. ; Yan H. Adv. Energy Mater. 2017, 7, 1602304.
15 Baran D. ; Ashraf R. S. ; Hanifi D. A. ; Abdelsamie M. ; Gasparini N. ; Rohr J. A. ; Holliday S. ; Wadsworth A. ; Lockett S. ; Neophytou M. ; Emmott C. J. ; Nelson J. ; Brabec C. J. ; Amassian A. ; Salleo A. ; Kirchartz T. ; Durrant J. R. ; McCulloch I. Nat. Mater. 2017, 16, 363.
16 Zhao W. C. ; Li S. S. ; Yao H. F. ; Zhang S. Q. ; Zhang Y. ; Yang B. ; Hou J. H. J. Am. Chem. Soc. 2017, 139, 7148.
17 Tang C. W. Appl. Phys. Lett. 1986, 48, 183.
18 Wei Z. X. Acta Phys. -Chim. Sin. 2017, 33, 2119.
18 魏志祥. 物理化学学报, 2017, 33, 2119.
19 Mazzio K. A. ; Luscombe C. K. Chem. Soc. Rev. 2015, 44, 78.
20 Nielsen C. B. ; Holliday S. ; Chen H. Y. ; Cryer S. J. ; McCulloch I. Acc. Chem. Res. 2015, 48, 2803.
21 Li Y. F. Acta Phys. -Chim. Sin. 2017, 33, 268.
21 李永舫. 物理化学学报, 2017, 33, 268.
22 Min J. ; Kwon O. K. ; Cui C. H. ; Park J.-H. ; Wu Y. ; Park S. Y. ; Li Y. F. ; Brabec C. J. J. Mater. Chem. A 2016, 4, 14234.
23 Fu Y. Y. ; Wang B. ; Qu J. F. ; Wu Y. ; Ma W. ; Geng Y. H. ; Han Y. C. ; Xie Z. Y. Adv. Funct. Mater. 2016, 26, 5922.
24 Bloking J. T. ; Han X. ; Higgs A. T. ; Kastrop J. P. ; Pandey L. ; Norton J. E. ; Risko C. ; Chen C. E. ; Brédas J.-L. ; McGehee M. D. ; Sellinger A. Chem. Mater. 2011, 23, 5484.
25 Zhou Y. ; Ding L. ; Shi K. ; Dai Y. Z. ; Ai N. ; Wang J. ; Pei J. Adv. Mater. 2012, 24, 957.
26 Zhou Y. ; Dai Y. Z. ; Zheng Y. Q. ; Wang X. Y. ; Wang J. Y. ; Pei J. Chem. Commun. 2013, 49, 5802.
27 Winzenberg K. N. ; Kemppinen P. ; Scholes F. H. ; Collis G. E. ; Shu Y. ; Singh T. B. ; Bilic A. ; Forsyth C. M. ; Watkins S. E. Chem. Commun. 2013, 49, 6307.
28 Lin Y. Z. ; Li Y. F. ; Zhan X. W. Adv. Energy Mater. 2013, 3, 724.
29 Lin Y. Z. ; Zhang Z. G. ; Bai H. T. ; Wang J. Y. ; Yao Y. H. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. Energy Environ. Sci. 2015, 8, 610.
30 Lin Y. Z. ; Wang J. Y. ; Zhang Z. G. ; Bai H. T. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. Adv. Mater. 2015, 27, 1170.
31 Zhao W. C. ; Qian D. P. ; Zhang S. Q. ; Li S. S. ; Inganas O. ; Gao F. ; Hou J. H. Adv. Mater. 2016, 28, 4734.
32 Rajaram S. ; Shivanna R. ; Kandappa S. K. ; Narayan K. S. J. Phys. Chem. Lett. 2012, 3, 2405.
33 Zhang X. ; Zhan C. L. ; Yao J. N. Chem. Mater. 2015, 27, 166.
34 Zang Y. ; Li C. Z. ; Chueh C. C. ; Williams S. T. ; Jiang W. ; Wang Z. H. ; Yu J. S. ; Jen A. K. Adv. Mater. 2014, 26, 5708.
35 Zhong Y. ; Trinh M. T. ; Chen R. ; Wang W. ; Khlyabich P. P. ; Kumar B. ; Xu Q. ; Nam C. Y. ; Sfeir M. Y. ; Black C. ; Steigerwald M. L. ; Loo Y. L. ; Xiao S. ; Ng F. ; Zhu X. Y. ; Nuckolls C. J. Am. Chem. Soc. 2014, 136, 15215.
36 Chiu M. Y. ; Jeng U. S. ; Su M. S. ; Wei K. H. Macromolecules 2010, 43, 428.
37 Alam M. M. ; Tonzola C. J. ; Jenekhe S. A. Macromolecules 2003, 36, 6577.
38 Sepe A. ; Rong Z. X. ; Sommer M. ; Vaynzof Y. ; Sheng X. Y. ; Muller-Buschbaum P. ; Smilgies D. M. ; Tan Z. K. ; Yang L. F. R. H. ; Steiner U. ; Huttner S. ENERG ENVIRON SCI 2014, 7, 1725.
39 Wolfer P. ; Schwenn P. E. ; Pandey A. K. ; Fang Y. ; Stingelin N. ; Burn P. L. ; Meredith P. J. Mater. Chem. A 2013, 1, 5989.
40 Ren G. Q. ; Ahmed E. ; Jenekhe S. A. Adv. Energy Mater. 2011, 1, 946.
41 Ye L. ; Jiang W. ; Zhao W. C. ; Zhang S. Q. ; Qian D. P. ; Wang Z. H. ; Hou J. H. Small 2014, 10, 4658.
42 Sharenko A. ; Proctor C. M. ; van der Poll T. S. ; Henson Z. B. ; Nguyen T. Q. ; Bazan G. C. Adv. Mater. 2013, 25, 4403.
43 Ye T. ; Singh R. ; Butt H. J. ; Floudas G. ; Keivanidis P. E. ACS Appl. Mat. Interfaces 2013, 5, 11844.
44 Singh R. ; Giussani E. ; Mr?z M. M. ; Di Fonzo F. ; Fazzi D. ; Cabanillas-González J. ; Oldridge L. ; Vaenas N. ; Kontos A. G. ; Falaras P. ; Grimsdale A. C. ; Jacob J. ; Müllen K. ; Keivanidis P. E. Org. Electron. 2014, 15, 1347.
45 Fu Y. Y. ; Yang Q. Q. ; Deng Y. F. ; Jiang W. ; Wang Z. H. ; Geng Y. H. ; Xie Z. Y. Org. Electron. 2015, 18, 24.
46 Liang Q. J. ; Han J. ; Song C. P. ; Wang Z. Y. ; Xin J. M. ; Yu X. H. ; Xie Z. Y. ; Ma W. ; Liu J. G. ; Han Y. C. J. Mater. Chem. C 2017, 5, 6842.
47 Kamm V. ; Battagliarin G. ; Howard I. A. ; Pisula W. ; Mavrinskiy A. ; Li C. ; Müllen K. ; Laquai F. Adv. Energy Mater. 2011, 1, 297.
48 Zhao J. B. ; Li Y. K. ; Lin H. R. ; Liu Y. H. ; Jiang K. ; Mu C. ; Ma T. X. ; Lin Lai J. Y. ; Hu H. W. ; Yu D. M. ; Yan H. Energy Environ. Sci. 2015, 8, 520.
49 Zhang X. ; Lu Z. H. ; Ye L. ; Zhan C. L. ; Hou J. H. ; Zhang S. Q. ; Jiang B. ; Zhao Y. ; Huang J. H. ; Zhang S. L. ; Liu Y. ; Shi Q. ; Liu Y. Q. ; Yao J. N. Adv. Mater. 2013, 25, 5791.
50 Lu Z. H. ; Jiang B. ; Zhang X. ; Tang A. L. ; Chen L. L. ; Zhan C. L. ; Yao J. N. Chem. Mater. 2014, 26, 2907.
51 Lin Y. Z. ; Wang Y. F. ; Wang J. Y. ; Hou J. H. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. Adv. Mater. 2014, 26, 5137.
52 Liu Y. H. ; Mu C. ; Jiang K. ; Zhao J. B. ; Li Y. K. ; Zhang L. ; Li Z. K. ; Lai J. Y. L. ; Hu H. W. ; Ma T. X. ; Hu R. R. ; Yu D. M. ; Huang X. H. ; Tang B. Z. ; Yan H. Adv. Mater. 2015, 27, 1015.
53 Chen W. Q. ; Yang X. ; Long G. K. ; Wan X. J. ; Chen Y. S. ; Zhang Q. C. J. Mater. Chem. C 2015, 3, 4698.
54 Sun D. ; Meng D. ; Cai Y. H. ; Fan B. B. ; Li Y. ; Jiang W. ; Huo L. J. ; Sun Y. M. ; Wang Z. H. J. Am. Chem. Soc. 2015, 137, 11156.
55 Rajaram S. ; Armstrong P. B. ; Kim B. J. ; xchet J. M. J. F. Chem. Mater. 2009, 21, 1775.
56 Li M. G. ; Wang L. ; Liu J. G. ; Zhou K. ; Yu X. H. ; Xing R. B. ; Geng Y. H. ; Han Y. C. Phys. Chem. Chem. Phys. 2014, 16, 4528.
57 Wiatrowski M. ; Dobruchowska E. ; Maniukiewicz W. ; Pietsch U. ; Kowalski J. ; Szamel Z. ; Ulanski J. Thin Solid Films 2010, 518, 2266.
58 Yang C. ; Orfino F. P. ; Holdcroft S. Macromolecules 1996, 29, 6510.
59 Wu F. C. ; Hsu S. W. ; Cheng H. L. ; Chou W. Y. ; Tang F. C. J. Phys. Chem. C 2013, 117, 8691.
60 Liu J. G. ; Chen L. ; Gao B. R. ; Cao X. X. ; Han Y. C. ; Xie Z. Y. ; Wang L. X. J. Mater. Chem. A 2013, 1, 6216.
61 Liang Y. Y. ; Xu Z. ; Xia J. B. ; Tsai S.-T. ; Wu Y. ; Li G. ; Ray C. ; Yu L. P. Adv. Mater. 2010, 22, E135.
62 Chu T. Y. ; Lu J. ; Beaupre S. ; Zhang Y. ; Pouliot J. R. ; Wakim S. ; Zhou J. ; Leclerc M. ; Li Z. ; Ding J. ; Tao Y. J. Am. Chem. Soc. 2011, 133, 4250.
63 Guo X. ; Cui C. H. ; Zhang M. J. ; Huo L. J. ; Huang Y. ; Hou J. H. ; Li Y. F. Energy Environ. Sci. 2012, 5, 7943.
64 Howard I. A. ; Laquai F. d. r. ; Keivanidis P. E. ; Friend R. H. ; Greenham N. C. J. Phys. Chem. C 2009, 113, 21225.
65 Yang B. ; Zhang S. Q. ; Chen Y. ; Cui Y. ; Liu D. L. ; Yao H. F. ; Zhang J. Q. ; Wei Z. X. ; Hou J. H. Macromolecules 2017, 50, 1453.
66 Zhang S. Q. ; Hou J. H. Acta Phys. -Chim. Sin. 2017, 33, 0001.
66 张少青; 侯剑辉. 物理化学学报, 2017, 33, 0001.
67 Li M. G. ; Liang Q. J. ; Zhao Q. Q. ; Zhou K. ; Yu X. H. ; Xie Z. Y. ; Liu J. G. ; Han Y. C. J. Mater. Chem. C 2016, 4, 10095.
68 Burke T. M. ; McGehee M. D. Adv. Mater. 2014, 26, 1923.
69 Westacott P. ; Tumbleston J. R. ; Shoaee S. ; Fearn S. ; Bannock J. H. ; Gilchrist J. B. ; Heutz S. ; deMello J. ; Heeney M. ; Ade H. ; Durrant J. ; McPhail D. S. ; Stingelin N. Energy Environ. Sci. 2013, 6, 2756.
70 Collins B. A. ; Tumbleston J. R. ; Ade H. J. Phys. Chem.Lett. 2011, 2, 3135.
71 Groves C. Energy Environ. Sci. 2013, 6, 1546.
72 Sweetnam S. ; Graham K. R. ; Ngongang Ndjawa G. O. ; Heumuller T. ; Bartelt J. A. ; Burke T. M. ; Li W. ; You W. ; Amassian A. ; McGehee M. D. J. Am. Chem. Soc. 2014, 136, 14078.
73 Bloking J. T. ; Giovenzana T. ; Higgs A. T. ; Ponec A. J. ; Hoke E. T. ; Vandewal K. ; Ko S. ; Bao Z. ; Sellinger A. ; McGehee M. D. Adv. Energy Mater. 2014, 4, 1301426.
74 Jamieson F. C. ; Domingo E. B. ; McCarthy-Ward T. ; Heeney M. ; Stingelin N. ; Durrant J. R. Chem. Sci. 2012, 3, 485.
75 Shaw P. E. ; Wolfer P. ; Langley B. ; Burn P. L. ; Meredith P. J. Phys. Chem. C 2014, 118, 13460.
76 Zhou E. ; Cong J. ; Hashimoto K. ; Tajima K. Adv. Mater. 2013, 25, 6991.
77 Vongsaysy U. ; Pavageau B. ; Wantz G. ; Bassani D. M. ; Servant L. ; Aziz H. Adv. Energy Mater. 2014, 4, 1300752.
78 Liu J. G. ; Shao S. Y. ; Wang H. F. ; Zhao K. ; Xue L. J. ; Gao X. ; Xie Z. Y. ; Han Y. C. Org. Electron. 2010, 11, 775.
79 Dang M. T. ; Wuest J. D. Chem. Soc. Rev. 2013, 42, 9105.
80 Lee J. K. ; Ma W. L. ; Brabec C. J. ; Yuen J. ; Moon J. S. ; Kim J. Y. ; Lee K. ; Bazan G. C. ; Heeger A. J. J. Am. Chem. Soc. 2008, 130, 3619.
81 Graham K. R. ; Wieruszewski P. M. ; Stalder R. ; Hartel M. J. ; Mei J. ; So F. ; Reynolds J. R. Adv. Funct. Mater. 2012, 22, 4801.
82 Su M. S. ; Kuo C. Y. ; Yuan M. C. ; Jeng U. S. ; Su C. J. ; Wei K. H. Adv. Mater. 2011, 23, 3315.
83 Salim T. ; Wong L. H. ; Br?uer B. ; Kukreja R. ; Foo Y. L. ; Bao Z. ; Lam Y. M. J. Mater. Chem. 2011, 21, 242.
84 Li M. G. ; Liu J. G. ; Cao X. X. ; Zhou K. ; Zhao Q. Q. ; Yu X. H. ; Xing R. B. ; Han Y. C. Phys. Chem. Chem. Phys. 2014, 16, 26917.
85 Wurthner F. Chem. Commun. 2004, 1564.
86 Chen Z. ; Stepanenko V. ; Dehm V. ; Prins P. ; Siebbeles L. D. ; Seibt J. ; Marquetand P. ; Engel V. ; Wurthner F. Chem. Eur. J. 2007, 13, 436.
87 Balakrishnan K. ; Datar A. ; Oitker R. ; Chen H. ; Zuo J. ; Zang L. J. Am. Chem. Soc. 2005, 127, 10496.
88 Love J. A. ; Proctor C. M. ; Liu J. ; Takacs C. J. ; Sharenko A. ; van der Poll T. S. ; Heeger A. J. ; Bazan G. C. ; Nguyen T.-Q. Adv. Funct. Mater. 2013, 23, 5019.
89 Verlaak S. ; Beljonne D. ; Cheyns D. ; Rolin C. ; Linares M. ; Castet F. ; Cornil J. ; Heremans P. Adv. Funct. Mater. 2009, 19, 3809.
90 Ye L. ; Jiao X. C. ; Zhou M. ; Zhang S. Q. ; Yao H. F. ; Zhao W. C. ; Xia A. D. ; Ade H. ; Hou J. H. Adv. Mater. 2015, 27, 6046.
91 Zhang H. ; Ye L. ; Hou J. H. Polym. Int. 2015, 64, 957.
92 Ye L. ; Jiao X. C. ; Zhang H. ; Li S. S. ; Yao H. F. ; Ade H. ; Hou J. H. Macromolecules 2015, 48, 7156.
[1] Zhe WANG,Kangle JIA,Tongqing LIU,Junwen HU,Xuefeng LI,Jinfeng DONG. pH and Light Reconfigured Complex Emulsions by Stimuli-Responsive Surfactants[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 84-91.
[2] Guoxiao JIA,Shaoqing ZHANG,Liyan YANG,Chang HE,Huili FAN,Jianhui HOU. Development of Benzodithiophene-Based A-D-A Small Molecules with Different Acceptor End Groups for Efficient Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 76-83.
[3] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[4] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[5] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 424-436.
[6] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[7] Jun YUAN,Ye LIU,Can ZHU,Ping SHEN,Meixiu WAN,Liuliu FENG,Yingping ZOU. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1272-1278.
[8] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[9] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[10] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[11] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[12] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[13] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[14] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[15] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.