Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (5): 456-475    DOI: 10.3866/PKU.WHXB201709211
REVIEW     
Oil-Water Separation Based on the Materials with Special Wettability
Wentao LI1,2,Jiale YONG1,3,Qing YANG1,2,*(),Feng CHEN1,3,*(),Yao FANG1,3,Xun HOU3
1 State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
2 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
3 School of Electronics & Information Engineering, Xi'an Jiaotong University, Key Laboratory of Photonics Technology for Information of Shaanxi Province, Xi'an 710049, P. R. China
Download: HTML     PDF(3939KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The frequency of oil-spill accidents and industrial wastewater discharges have caused severe water pollution, not only resulting in huge economic losses but also threatening the ecological system. Recently, researchers have developed different types of materials with special wettability (such as superhydrophobicity or superoleophobicity) and used them successfully for oil-water separation. Superhydrophobic and superoleophobic surfaces can generally be obtained by designing the surface geometric micro-topography and chemical composition of solid materials. Endowing porous materials with reverse super-wettability to water and oil using various microfabrication technologies is the key to separate oil-water mixtures. In this review we initially identify the significance of fabricating oil/water-separating materials and achieving effective separations. Then, the typical theoretical principles underlying surface wettability are briefly introduced. According to the difference in surface wettabilities toward water and oil, we classify the current oil-water separating materials into three categories: (ⅰ) superhydrophobic/superoleophilic materials, (ⅱ) superoleophobic/ superhydrophilic materials, and (ⅲ) smart-response materials with switchable wettability. This review summarizes the representative research work for each of these materials, including their fabrication methods, principle and process of oil-water separation, and main characteristics and applications. Finally, existing problems, challenges, and future prospects of this fast-growing field of special wettability porous materials for the separation of oil-water mixtures are discussed.



Key wordsOil-water separation      Superhydrophobicity      Superoleophobicity      Smart-response      Wettability     
Received: 29 August 2017      Published: 21 September 2017
O647  
Fund:  the National Natural Science Foundation of China(51335008);the National Natural Science Foundation of China(61475124);the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF)(U1630111);the National Key Research and Development Program of China(2017YFB1104700);China Postdoctoral Science Foundation(2016M600786)
Corresponding Authors: Qing YANG,Feng CHEN     E-mail: yangqing@mail.xjtu.edu.cn;chenfeng@mail.xjtu.edu.cn
Cite this article:

Wentao LI,Jiale YONG,Qing YANG,Feng CHEN,Yao FANG,Xun HOU. Oil-Water Separation Based on the Materials with Special Wettability. Acta Phys. -Chim. Sin., 2018, 34(5): 456-475.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709211     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/456

Fig 1 Gulf of Mexico oil spill3.
Fig 2 Photographs and surfaces microstructures of natural animals and plants with special wettability (a) lotus leaf 12, 13, (b) red rose petal 14, (c) rice leaf 15, 16, (d) butterfly wing17, (e) leg of a water strider 18, 19, (f) mosquito eye 20, (g) fish scales 21, (h) clam's shell 22. (a), (c), (f), (g), (h) adapted from John Wiley and Sons, (b) adapted from American Chemical Society, (d) adapted from Royal Society of Chemistry, (e) adapted from Nature Publishing Group.
Fig 3 Different wetting models. (a) Young state in air. (b) Wenzel state in air. (c) Transition state in air. (d) Schematic diagram of sliding angle. (e) Cassie state in air. (f) Underwater Cassie state of an oil droplet.
Fig 4 Oil-water separation based on PTFE modified stainless steel mesh 23. (a) SEM image of the PTFE coated stainless steel mesh. (b) High-magnification microstructure of the metal mesh surface. (c) The shape of a water droplet on the resultant surface. (d) Dripping a diesel droplet on the resultant mesh surface. Adapted from John Wiley and Sons.
Fig 5 Oil-water separation based on superhydrophobic/superoleopholic sponge 66. (a) Schematic of fabricating superhydrophobic sponges. (b) Absorbing oil from the oil-water mmixture by the as-prepared sponge. Adapted from American Chemical Society.
Fig 6 (a) Fabrication of graphene-wrapped sponge (GWS). (b) Photo of high viscous crude oil. (c) Comparation of an oil droplet being absorbed by the MW@RGO. Upper row: without applied voltage; lower row: with applied voltage. (d, e) Comparation of the crude oil separating efficiency of the designed separation device: (d) with applied voltage, (e) without applied voltage 71. Adapted from Nature Publishing Group.
Fig 7 Achieving oil-water separation by femtosecond laser ablated superhydrophobic PTFE Sheet 84. (a, b) SEM images of femtosecond laser ablated PTFE surface. (c, d) Water and oil droplets on femtosecond laser ablated PTFE surface, showing superhydrophobicity and superoleophobicity. (e-g) SEM and optical microscope images of through microholes array structured PTFE sheet. (h, i) Dripping oil droplets onto the through microholes array structured PTFE sheet. (j-l) Separating the mixture of oil and strong acid solution. (m-o) Separating the mixture of oil and strong base solution. Oil shows red color and water shows blue color. Adapted from Elsevier.
Fig 8 Oil-water separation based on the PAM hydrogel-coated stainless steel mesh 26. (a) SEM image of PAM hydrogel-coated stainless steel mesh. (b) High-magnfication SEM image of the rough metal mesh surface. (c-e) Underwater superoleophobicity and ultralow oil-adhesion of the resultant metal mesh. (f) Before and (g) after separating the mixtures of water and crude oil. Adapted from John Wiley and Sons.
Fig 9 (a) Fabrication of the porous PVDF membrane from a non-woven fabric through the phase inversion process. (b) Photo of the as-prepared high-strength membrane with screen mesh as inner support. (c-e) SEM images of the PVDF membrane surface with different magnification. (f) Superhydrophilicity in air and Superhydrophobicity in oil. (g) Superoleophilicity in air and underwater superoleophobicity. (h, i) Separating different oil/water emulsions by the as-prepared PVDF membrane: (h) oil-in-water emulsion, (i) water-in-oil emulsion 108. Adapted from John Wiley and Sons.
Fig 10 Oil/Water separation based on pre-wetted sand layer 110. (a) Photograph of desert. (b) Underwater oil droplets on the sand layer. (c-e) SEM images of the sand particles. Shape of (f) heavy and (g) light oil droplets on the sand layer underwater. (h) The mixture of oil (dyed red) and water (dyed blue) was poured into the designed separation device. (i) After the separation of the water-oil mixture. Adapted from John Wiley and Sons.
Fig 11 (a, b) SEM images of the surface morphology of the PDDA-PFO/SiO2 coating. (c) Water droplets spreading out and pass through the resultant metal mesh quickly. (d) Shape of an oil droplet on the resultant metal mesh with oil contact angle of 157° ± 2°. (e, f) Pouring the mixture of oil (dyed red) and water onto the PDDA-PFO/SiO2 coated mesh 32. Adapted from Royal Society of Chemistry.
Fig 12 (a) Fabrication process of the P2VP-b-PDMS grated materials with pH-responsive wettability. (b) SEM image of the untreated non-woven fabric. (c) SEM images of the non-woven fabric after the deposition of silica nanoparticles and the modification by P2VP-b-PDMS. The insets in (b, c) are high-magnification SEM image of a single fiber. (d) Mechanism of underwater switchable oil wettability with pH. (e) The oil wettability of as-prepared non-woven fabric. (f) Oil-water separation based on the non-woven fabric pre-wetted with the water with pH = 6.5. (g) Oil-water separation based on the non-woven fabric pre-wetted with the water with pH = 2 116. Adapted from Nature Publishing Group.
Fig 13 Oil-water separation based on the aligned ZnO nanorod array-coated stainless steel mesh 127. (a) SEM image of the as-prepared stainless steel mesh. (b) High-magnification SEM image of the ZnO nanorod. (c, d) Wettability switch by UV irradiation: (c) the water wettabity in air, (d) the oil wettabity underwater. (e) Oil-water separation based on the as-prepared mesh after dark store. (f) Oil-water separation based on the as-prepared mesh after UV irradiation. Adapted from Royal Society of Chemistry.
1 https://en.wikipedia.org/wiki/Exxon_Valdez_oil_spill.
2 https://en.wikipedia.org/wiki/Prestige_oil_spill.
3 https://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill.
4 Wang B. ; Liang W. X. ; Guo Z. G. ; Liu W. M. Chem. Soc. Rev. 2015, 44, 336.
5 Xue Z. X. ; Cao Y. Z. ; Liu N. ; Feng L. ; Jiang L. J.Mater. Chem. A 2014, 2, 2445.
6 Chu Z. L. ; Feng Y. J. ; Seeger S. Angew. Chem. Int. Ed. 2015, 54, 2328.
7 Wen L. P. ; Tian Y. ; Jiang L. Angew. Chem. Int. Ed. 2015, 54, 3387.
8 Ma Q. L. ; Cheng H. F. ; Fane A. G. ; Wang R. ; Zhang H. Small 2016, 16, 2186.
9 Yong J. L. ; Chen F. ; Yang Q. ; Hou J. L. ; Hou X. Chem. Soc. Rev. 2017.
10 Gupta R. K. ; Dunderdale G. J. ; England M. W. ; Hozumi A. J. Mater. Chem. A. 2017, 16025, 5.
11 Xia F. ; Jiang L. Adv. Mater. 2008, 20, 2842.
12 Barthlott W. ; Neinhuis C. Planta 1997, 202, 1.
13 Zorba V. ; Stratakis E. ; Barberoglou M. ; Spanakis E. ; Tzanetakis P. ; Anastasiadis S. H. ; Fotakis C. Adv. Mater. 2008, 20, 4049.
14 Feng L. ; Zhang Y. N. ; Xi J. M. ; Zhu Y. ; Wang N. ; Xia F. ; Jiang L. Langmuir 2008, 24, 4114.
15 Feng L. ; Li S. H. ; Li Y. S. ; Li H. J. ; Zhang J. L. ; Zhai J. ; Song Y. L. ; Liu B. Q. ; Jiang L. ; Zhu D. B. Adv. Mater. 2002, 14, 1857.
16 Wu D. ; Wang J. N. ; Wu S. Z. ; Chen Q. D. ; Zhao S. ; Zhang H. ; Sun H. B. ; Jiang L. Adv. Funct. Mater. 2011, 21, 2927.
17 Zheng Y. M. ; Gao X. F. ; Jiang L. Soft Matter 2007, 3, 178.
18 Gao X. F. ; Jiang L. Nature 2004, 432, 36.
19 Hu D. L. ; Chan B. ; Bush J. M. Nature 2003, 424, 663.
20 Gao X. ; Yan X. ; Yao X. ; Xu L. ; Zhang K. ; Zhang J. ; Yang B. ; Jiang L. Adv. Mater. 2007, 19, 2213.
21 Liu M J ; Wang S T ; Wei Z X ; Song Y L ; Jiang L. Adv. Mater. 2009, 21, 665.
22 Liu X. L. ; Zhou J. ; Xue Z. X. ; Gao J. ; Meng J. X. ; Wang S. T. ; Jiang L. Adv. Mater. 2012, 24, 3401.
23 Feng L. ; Zhang Z. G. ; Mai Z. H. ; Ma Y. M. ; Liu B. Q. ; Jiang L. Angew. Chem. Int. Ed. 2004, 43, 2012.
24 Tian D. L. ; Zhang X. F. ; Wang X. ; Zhai J. ; Jiang L. Phys. Chem. Chem. Phys. 2011, 13, 14606.
25 Wang C. F. ; Tzeng F. S. ; Chen H. G. ; Chang C. J. Langmuir 2012, 28, 10015.
26 Xue Z.X. ; Wang S. T. ; Lin L. ; Chen L. ; Liu M. J. ; Feng L. ; Jiang L. Adv. Mater. 2011, 23, 4270.
27 Wen Q. ; Di J. C. ; Jiang L. ; Yu J. H. ; Xu R. R. Chem. Sci. 2013, 4, 591.
28 Deng D. ; Prendergast D. P. ; MacFarlane J. ; Bagatin R. ; Stellacci F. ; Gschwend P. M. ACS. Mater. Interface 2013, 5, 774.
29 Li J. ; Kang R.M. ; Tang X. H. ; She H. D. ; Yang Y. X. ; Zha F. Nanoscale 2016, 8, 7638.
30 Song J. L. ; Huang S. ; Lu Y. ; Bu X. W. ; Mates J. E. ; Ghosh A. ; Ganguly R. ; Carmalt C. J. ; Parkin I. P. ; Xu W. J. ; Megaridis C. M. ACS Appl. Mater. Interfaces 2014, 6, 19858.
31 Howarter J. A. ; Youngblood J. P. J.Colloid Interface Sci. 2009, 329, 127.
32 Yang J. ; Zhang Z. Z. ; Xu X. H. ; Zhu X. T. ; Men X. H. ; Zhou X. Y. J.Mater. Chem. 2012, 22, 2834.
33 Zhang Y. L. ; Xia H. ; Kim E. ; Sun H. B. Soft Matter 2012, 8, 11217.
34 Wang Q. ; Cui Z. ; Xiao Y. ; Chen Q. Appl. Surf. Sci. 2007, 253, 9054.
35 Su C. H. ; Xu Y. ; Zhang W. ; Liu Y. ; Li J. Appl. Surf. Sci. 2012, 258, 2319.
36 Li H. ; Zheng M. ; Ma L. ; Zhu C. ; Lu S. Mater. Res. Bull. 2013, 48, 25.
37 La D. D. ; Anh N. T. ; Lee S. ; Kim J. W. ; Kim Y. S. Appl. Surf. Sci. 2011, 257, 5705.
38 Li T. T. ; Shen J. ; Zhang Z. ; Wang S. ; Wei D. Y. RSC Adv. 2016, 6, 40656.
39 Young T. Trans. R. Soc. London 1805, 95, 65.
40 Wenzel R. N. Ind. Eng. Chem. 1936, 28, 988.
41 Cassie A.B.D. ; Baxter S. Trans Faraday Soc. 1944, 40, 546.
42 Xia F. ; Jiang L. Adv. Mater. 2008, 20, 2842.
43 Zhang Y. ; Chen Y. ; Shi J. ; Li J. ; Guo Z. J.Mater. Chem. 2012, 22, 799.
44 Li J. ; Jing Z. ; Zha F. ; Yang Y. ; Wang Q. ; Lei Z. ACS Appl. Mater. Interfaces 2014, 6, 8868.
45 Bormashenko E. Colloids Surf. A 2009, 345, 163.
46 Cheng Z. ; Du M. ; Lai H. ; Zhang N. ; Sun K. Nanoscale 2013, 5, 2776.
47 Yong J. L. ; Yang Q. ; Chen F. ; Zhang D. S. ; Du G. Q. ; Bian H. ; Si J. H. ; Yun F. ; Hou X. Appl. Surf. Sci. 2014, 288, 579.
48 Wu D. ; Wu S. Z. ; Chen Q. D. ; Zhao S. ; Zhang H. ; Jiao J. ; Piersol J. A. ; Wang J. N. ; Sun H. B. ; Jiang L. Lab Chip 2011, 11, 3873.
49 Yong J. L. ; Chen F. ; Yang Q. ; Zhang D. S. ; Farooq U ; Du G. Q. ; Hou X. J.Mater. Chem. A 2014, 2, 8790.
50 Zhang F. ; Zhang W. B. ; Shi Z. ; Wang D. ; Jin J. ; Jiang L. Adv. Mater. 2013, 25, 4192.
51 Gao X. F. ; Xu L. P. ; Xue Z. G. ; Feng L. ; Peng J. T. ; Wen Y. Q. ; Wang S. T. ; Zhang X. J. Adv. Mater. 2014, 26, 1771.
52 Yong J. L. ; Chen F. ; Yang Q. ; Du G. Q. ; Shan C. ; Bian H. ; Farooq U. ; Hou X. J.Mater. Chem. A 2015, 3, 9379.
53 Yong J. L. ; Chen F. ; Yang Q. ; Farooq U. ; Hou X. J.Mater. Chem. A 2015, 3, 10703.
54 Ding C. ; Zhu Y. ; Liu M. ; Feng L. ; Wan M. ; Jiang L. Soft Matter 2012, 8, 9064.
55 Li X. M. ; Reinhoudt D. ; Calama M. C. Chem. Soc. Rev. 2007, 36, 1350.
56 Yoshimitsu; Z. ; Nakajima A. ; Watanabe T. ; Hashimoro K. Langmuir 2002, 18, 5818.
57 Darmanin T. ; Guittard F. J.Mater. Chem. A 2014, 2, 16319.
58 Ragesh P. ; Ganesh V. A. ; Nair S. V. ; Nair A. S. J.Mater. Chem. A 2014, 2, 14773.
59 Zhang Y. ; Chen Y. ; Shi L. ; Li J. ; Guo Z. J.Mater. Chem. 2012, 22, 779.
60 Roach P. ; Shirtcliffe N. J. ; Newton M. I. Soft Matter 2008, 4, 224.
61 Wang S. T. ; Song Y. L. ; Jiang L. Nanotechnology 2007, 18, 015103.
62 Wang C. X. ; Yao T. J. ; Wu J. ; Ma C. ; Fan Z. X. ; Wang Z. Y. ; Cheng Y. R. ; Lin Q. ; Yang B. ACS Appl. Mater. Interfaces 2009, 11, 2613.
63 Crick C. R. ; Gibbins J. A. ; Parkin I. P. J.Mater. Chem. A 2013, 1, 5943.
64 Kong L. H. ; Chen X. H. ; Yu L. G. ; Wu Z. S. ; Zhang P. Y. ACS Appl. Mater. Interfaces 2015, 7, 2616.
65 Wang F. J. ; Lei S. ; Xue M. S. ; Ou J. F. ; Li C. Q. ; Li W. J.Phys. Chem. C 2014, 118, 6344.
66 Zhu Q. ; Pan Q. M. ACS Nano 2014, 8, 1402.
67 Pan Y X ; Shi K ; Peng C ; Wang W C ; Liu Z ; Ji X L. ACS Appl. Mater. Interfaces 2014, 6, 8651.
68 Gao X. ; Zhou J. Y. ; Du R. ; Xie Z. P. ; Deng S. B. ; Liu R. ; Liu Z. F. ; Zhang J. Adv. Mater. 2016, 28, 168.
69 Du R. ; Gao X. ; Feng Q. L. ; Zhao Q. C. ; Li P. ; Deng S. B. ; Shi L. R. ; Zhang J. Adv. Mater. 2016, 28, 936.
70 Li J. ; Yan L. ; Tang X. H. ; Feng H. ; Hu D. C. ; Zha F. Adv. Mater. Interfaces 2016, 3, 1500770.
71 Ge J. ; Shi L. A. ; Wang Y. C. ; Zhao H. Y. ; Yao H. B. ; Zhu Y. B. ; Zhang Y. ; Zhu H. W. ; Wu H. A. ; Yu S. H. Nat. Nanotech. 2017, 12, 434.
72 Haeshin L. ; Dellatore S. M. ; Miller W. M. ; Messermith P. B. Science 2007, 318, 426.
73 Lee H. ; Scherer N. F. ; Messermith P. B. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12999.
74 Choi S. J. ; Kwon T. H. ; Im H. ; Moon D. I. ; Baek D. J. ; Seol M. L. ; Duarte J. P. ; Choi Y. K. ACS Appl. Mater. Interfaces 2011, 3, 4552.
75 Yu S. Z. ; Tan H. Y. ; Wang J. ; Liu X. ; Zhou K. B. ACS Appl. Mater. Interfaces 2015, 7, 6745.
76 Zou F. X. ; Peng L. ; Fu W. X. ; Zhang J. L. ; Li Z. B. RSC Adv. 2015, 5, 76346.
77 Zhang X. ; Zhua W. Z. ; Parkin I. P. RSC Adv. 2017, 7, 31.
78 Li S. H. ; Huang J. Y. ; Chen Z. ; Chen G. Q. ; Lai Y. K. J.Mater. Chem. A 2017, 5, 31.
79 Lai Y. K. ; Huang J. Y. ; Cui Z. Q. ; Ge M. Z. ; Zhang K.Q. ; Chen Z. ; Chi L. F. small 2016, 12, 2203.
80 Li S. H. ; Huang J. Y. ; Ge M. Z. ; Cao C. Y. ; Deng S. ; Zhang S. N. ; Cuo G. Q. ; Zhang K. Q. ; Al-Deyab S. S. ; Lai Y. K. Adv. Mater. Interfaces 2015, 2, 1500220.
81 Li Yang. ; Wang J. D. ; Fan L. N. ; Chen D. R. Acta Phys. -Chim. Sin. 2016, 32 (4), 990.
81 李杨; 汪家道; 樊丽宁; 陈大融. 物理化学学报, 2016, 32 (4), 990.
82 Cao C. Y. ; Ge M. Z. ; Huang J. Y. ; Li S. H. ; Deng S. ; Zhang S. N. ; Chen Z. ; Zhang K. Q. ; Al-Deyab S. S. ; Lai Y. K. J.Mater. Chem. A 2016, 4, 12179.
83 Xue C. H. ; Li Y. R. ; Hou J. L. ; Zhang L. ; Ma J. Z. ; Jia S. T. J. Mater. Chem. A 2015, 3, 10248.
84 Yong J. L. ; Fang Y. ; Chen F. ; Huo J. L. ; Yang Q. ; Bian H. ; Du G. Q. ; Hou X. Appl. Surf. Sci. 2016, 389, 1148.
85 Arbatan T. ; Fang X. Y. ; Shen W. Chem. Eng. J. 2011, 166, 787.
86 Guix M. ; Orozco J. ; Garcia M. ; Gao W. ; Sattayasamitsathit S. ; Merkoci A. ; Escarpa A. ; Wang J. ACS Nano 2012, 6, 4445.
87 Yong J. L. ; Chen F. ; Yang Q. ; Hou X. Soft Matter 2015, 11, 8897.
88 Chen F. ; Zhang D. S. ; Yang Q. ; Yong J. L. ; Du G. Q. ; Si J. H. ; Yun F. ; Hou X. ACS Appl. Mater. Interfaces 2013, 5, 6777.
89 Jiang H. B. ; Zhang Y. L. ; Han D. D. ; Xia H. ; Feng J. ; Chen Q. D. ; Hong Z. R. ; Sun H. B. Adv. Funt. Mater. 2014, 24, 4595.
90 Yong J. L. ; Chen F. ; Yang Q. ; Fang Y. ; Huo J. L. ; Zhang J. Z. ; Hou X. Adv. Mater. Interfaces 2017, 4, 1700552.
91 Yong J. L. ; Yang Q. ; Chen F. ; Zhang D. S. ; Farooq U. ; Du G. Q. ; Hou X. J.Mater. Chem. 2014, 2, 5499.
92 Vorobyev A. Y. ; Guo C. L. Laser Photonics Rev. 2013, 7, 385.
93 Sugioka K. ; Chen Y. Appl. Phys. Rev. 2014, 1, 041303.
94 Kawata S. ; Sun H. B. ; Tanaka T. ; Takada K. Nature 2001, 412, 697.
95 Dong Y. ; Li J. ; Shi L. ; Wang X. B. ; Guo Z. G. ; Liu W. M. Chem. Commun. 2014, 50, 5586.
96 Liu Y. Q. ; Zhang Y. L. ; Fu X. Y. ; Sun H. B. ACS Appl. Mater. Interfaces 2015, 7, 20930.
97 Zhang L. B. ; Zhong Y. J. ; Cha D. K. ; Wang P. Sci. Rep. 2013, 3, 2326.
98 Li J. ; Li D. M. ; Yang Y. X. ; Li J. P. ; Zha F. ; Lei Z. Q. Green Chem. 2016, 18, 541.
99 Chen Y. E. ; Wang N. ; Guo F. Y. ; Hou L. L. ; Liu J. C. ; Liu J. ; Xu Y. ; Zhao. Y. ; Jiang L. J.Mater. Chem. A 2016, 4, 12014.
100 Zhang F. ; Zhang W. B. ; Shi Z. ; Wang D. ; Jin J. ; Jiang L. Adv. Mater. 2013, 25, 4192.
101 Zhang S. Y. ; Lu F. ; Tao L. ; Liu N. ; Gao C. G. ; Feng L. ; Wei Y. ACS Appl. Mater. Interfaces 2013, 5, 11971.
102 Gao S. J. ; Sun J. C. ; Liu P. P. ; Zhang F. ; Zhang W. B. ; Yuan S. L. ; Li J. Y. ; Jin J. Adv. Mater. 2016, 28, 5307.
103 Zhang E. S. ; Cheng Z. J. ; Lv T. ; Qian Y. H. ; Liu Y. Y. J.Mater. Chem. A 2015, 3, 13411.
104 Li J. ; Yan L. ; Li H. Y. ; Li W. J. ; Zha F. ; Lei Z. Q. J.Mater. Chem. A 2015, 3, 14696.
105 Teng C. ; Lu X. Y. ; Ren G. G. ; Zhu Y. ; Wan M. X. ; Jiang L. Adv. Mater. Interfaces 2014, 1, 1400099.
106 Zhou C. L. ; Cheng J. ; Hou K. ; Zhao A. ; Pi P. H. ; Wen X. F. ; Xu S. P. Chem. Eng. J. 2016, 301, 249.
107 Yu Z. W. ; F. Yun F. ; Gong Z. Y. ; Yao Q. ; Dou S. X. ; Liu K. S. ; Jiang L. ; Wang X. L. J.Mater. Chem. A 2017, 5, 10821.
108 Tao M. M. ; Xue L. X. ; Liu F. ; Jiang L. Adv. Mater. 2014, 26, 2943.
109 Chen P. C. ; Xu Z. K. Sci. Rep. 2013, 3, 2776.
110 Yong J. L. ; Chen F. ; Yang Q. ; Bian. H. ; Du G. Q. ; Shan C. ; Huo J. L. ; Fang Y. ; Hou X. Adv. Mater. Interfaces 2016, 3, 1500650.
111 Kota A. K. ; Kwon G. ; Choi W. ; Mabry J. M. ; Tuteja A. Nat. Commun. 2012, 3, 1025.
112 Pan S. J. ; Guo R. ; Xu W. J. AIChE J. 2014, 60, 2752.
113 Brown P S ; Bhushan B. Sci. Rep. 2015, 5, 870.
114 Chu Z. ; Seeger S. Chem. Soc. Rev. 2014, 43, 2784.
115 Kota A. K. ; Kwon G. ; Tuteja A. NPG Asia Mater. 2014, 6, e109.
116 Zhang L. B. ; Zhang Z. H. ; Wang P. NPG Asia Mater. 2012, 4, e8.
117 Ju G. ; Cheng M. ; Shi Y. NPG Asia Mater. 2014, 6, e111.
118 Cheng Z. J. ; Lai H. ; Du Y. ; Fu K. W. ; Hou R. ; Li C. ; Zhang N. Q. ; Sun K. N. ACS Appl. Mater. Interfaces 2014, 6, 636.
119 Chen Q. F. ; Li M. Z. ; Yang F. ; Liu M. J. ; Li L. ; Wang S. T. ; Jiang L. Soft Matter 2012, 8, 6740.
120 Li M. C. ; Wang B. ; Heng L. P. ; Jiang L. Adv. Mater. Interfaces 2014, 1, 1400298.
121 Kwon G. ; Kota A. K. ; Li Y. X. ; Sohani A. ; Mabry J. M. ; Tuteja A. Adv. Mater. 2012, 24, 3666.
122 Xin B. W. ; Hao J. C. Chem. Soc. Rev. 2010, 39, 769.
123 Lim H S ; Han J T ; Kwak D ; Jin M ; Cho K. J. Am. Chem. Soc. 2006, 128, 14458.
124 Wang R. ; Hashimoto K. ; Fujishima A. ; Chikuni M. ; Kojima E. ; Kitamura A. ; Shimohigoshi M. ; Watanabe T. Nature 1997, 388, 431.
125 Sawai Y. ; Nishimoto S. ; Kameshima Y. ; Fujii E. ; Miyake M. Langmuir 2013, 29, 6784.
126 Feng X. J. ; Feng L. ; Jin M. H. ; Zhai J. ; Jiang L. ; Zhu D. B. J.Am. Chem. Soc. 2004, 126, 62.
127 Tian D. L. ; Zhang X. F. ; Tian Y. ; Wu Y. ; Wang X. ; Zhai J. ; Jiang L. J.Mater. Chem. 2012, 22, 19652.
128 Xue B. L. ; Gao L. C. ; Hou Y. P. ; Liu Z. W. ; Jiang L. Adv. Mater. 2013, 25, 273.
[1] Xiang LIU,Jin-Tao WANG,Yue ZHANG,Zhan-Hong LI,Chang-Hong XU,Lin TONG. Fluorescence In situ Observation of the Interfacial Dynamics and Adhesion Behaviors of Water and Oil Droplets in a Confined Geometry[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1257-1266.
[2] Yang LI,Jia-Dao WANG,Li-Ning FAN,Da-Rong CHEN. Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 990-996.
[3] SONG Gen-Ping, XIA Dong-Xiang. One-Step Preparation of Superhydrophobic Polyaniline/Sodium Dodecylbenzenesulfonate Composites[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 583-588.
[4] ZHANG You-Fa, WU Jie, YU Xin-Quan, LIANG Cai-Hua, WU Jun. Frost and Ice Transport on Superhydrophobic Copper Surfaces with Patterned Micro- and Nano-Structures[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1970-1978.
[5] HUANG Jian-Ye, WANG Feng-Hui, ZHAO Xiang, ZHANG Kai. Wetting Transition and Stability Testing of Superhydrophobic State[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2459-2464.
[6] XU Fei-Yan, LIU Li-Jun, QIN Jian, LIU Bei, MEI Shuang. Solution-Phase Synthesis of Superhydrophobic Copper Surface with Dual Scale Roughness[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 693-698.
[7] ZHANG You-Fa, YU Xin-Quan, ZHOU Quan-Hui, LI Kang-Ning. Fabrication and Anti-Icing Performance of a Superhydrophobic Copper Surface with Low Adhesion[J]. Acta Phys. -Chim. Sin., 2010, 26(05): 1457-1462.
[8] XIE Hui, LIU Chao. Effects of Surface Wettability on Bubbles in Nanochannels[J]. Acta Phys. -Chim. Sin., 2009, 25(12): 2537-2542.
[9] ZHOU Si-Si, GUAN Zi-Sheng, LI Qiang, LU Chun-Hua, XU Zhong-Zi. Fabrication of Superhydrophobic ZnO Surfaces via Zn Foil Hydrothermal Reactions and Fluoroalkylsilane Modified Process[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1593-1598.
[10] CHEN Ying; WANG Hao; WANG Chang-Song; FENG Xin; LU Xiao-Hua. Wetting Behaviors of Ethanol/Water on Rough PTFE Surface[J]. Acta Phys. -Chim. Sin., 2007, 23(08): 1168-1172.
[11] ZHOU Ming; ZHENG Ao-Ran; YANG Jia-Hong. Superhydrophobic Surfaces Fabricated by Replica Molding and Its Applications[J]. Acta Phys. -Chim. Sin., 2007, 23(08): 1296-1300.
[12] Bi Zhi-Chu;Liao Wen-Sheng;Qi Li-Yun. Characteristics of Ethanediyl-α,β-bis(cetyldimethylammonium bromide) Dilute Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2003, 19(11): 1015-1019.
[13] Bi Zhi-Chu;Liao Wen-Sheng. Wettability Changes by CTAB Adsorption at Surfaces of SiO2 Film or Silica Gel Powder and Mimic Oil Recovery[J]. Acta Phys. -Chim. Sin., 2002, 18(11): 962-966.