Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (5): 497-502    DOI: 10.3866/PKU.WHXB201709222
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes
Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU*()
Download: HTML     PDF(807KB) Export: BibTeX | EndNote (RIS)      

Abstract  

o-Thioquinones can undergo either [2+4] or [4+2] cycloaddition reactions with acyclic dienes. To illustrate the bonding processes in these cycloadditions, the natural orbital Fukui function (NOFF) and bonding reactivity descriptor have been employed. The electrophilicity of a bond or an orbital in the o-thioquinone as well as in the acyclic diene has been found using the NOFF, which suggests that electron transfer takes place from an electron-donating bonding orbital to an electron-accepting antibonding/bonding orbital, leading to the cyclic product via the formation of a circular loop and two covalent bonds. The bonding reactivity descriptor shows that covalent bonds readily form between atom k1 of one molecule with a large fk1+ value and atom k2 of another molecule with a large fk2- value. Both the NOFF and the bonding reactivity descriptor are efficient tools for interpreting the mechanism underlying the [2+4] and [4+2] cycloaddition between o-thioquinones and acyclic dienes.



Key wordsFukui function      Natural orbital Fukui function (NOFF)      Bonding reactivity descriptor      Cycloaddition      Nucleophilic/electrophilic attack     
Received: 30 August 2017      Published: 22 September 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21403097);the Fundamental Research Funds for the Central Universities, China(lzujbky-2016-45)
Corresponding Authors: Panpan ZHOU     E-mail: zhoupp@lzu.edu.cn
Cite this article:

Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes. Acta Physico-Chimica Sinca, 2018, 34(5): 497-502.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709222     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/497

 
 
 
Natural bond orbital fnbo+ fnbo- Reactivityb
R1 BD(1)C1―S1 0.00004 -0.00119 nucleophilic
BD(2)C1―S1 -0.96474 0.92991 electrophilic
BD*(1)C1―S1 -0.00058 -0.00208 inactive
BD*(2)C1―S1 -0.12195 0.02222 electrophilic
BD(1)C2―O2 -0.00025 0.00008 electrophilic
BD(2)C2―O2 -0.97636 0.01660 electrophilic
BD*(1)C2―O2 -0.00021 -0.00034 inactive
BD*(2)C2―O2 -0.10270 0.01291 electrophilic
R2 BD(1)C1–C2 -0.00191 -0.00202 inactive
BD(2)C1―C2 -0.96562 0.96019 electrophilic
BD*(1)C1―C2 0.00046 0.00196 amphiphilic
BD*(2)C1―C2 -0.04328 0.03795 electrophilic
BD(1)C3―C4 -0.00141 -0.00348 inactive
BD(2)C3―C4 -0.96961 0.96052 electrophilic
BD*(1)C3–C4 0.00127 0.00198 amphiphilic
BD*(2)C3―C4 -0.04842 0.03799 electrophilic
R2' BD(1)C1―C2 -0.00209 -0.00273 inactive
BD(2)C1―C2 -0.95650 0.95200 electrophilic
BD*(1)C1―C2 0.00052 0.00206 amphiphilic
BD*(2)C1―C2 -0.05322 0.05365 electrophilic
BD(1)C3―C4 -0.00165 -0.00292 inactive
BD(2)C3―C4 -0.95971 0.94557 electrophilic
BD*(1)C3―C4 0.00113 0.00189 amphiphilic
BD*(2)C3―C4 -0.05703 0.04618 electrophilic
 
 
 
 
Molecule Atom (k) fk+ fk-
R1 C1 0.111 0.011
C2 0.065 0.008
C3 0.009 0.028
C4 0.070 0.023
C5 0.030 0.041
C6 -0.018 -0.004
C7 0.060 0.048
C8 0.023 0.020
C9 0.075 0.073
C10 0.017 0.030
S1 0.123 0.066
O2 0.311 0.543
R2 C1 0.216 0.220
C2 0.088 0.112
C3 0.102 0.089
C4 0.338 0.295
C5 -0.012 -0.032
C6 -0.009 -0.022
R2′ C1 0.220 0.254
C2 0.065 0.098
C3 0.106 0.078
C4 0.339 0.305
C5 -0.010 -0.035
C6 -0.008 -0.025
 
1 Chapman O. L. ; McIntosh C. L. J. Chem. Soc. D 1971, 383.
2 Mayo P. D. ; Weedon A. C. ; Wong G. S. K. J.Org. Chem. 1979, 44, 1977.
3 Schulz R. ; Schweig A. Angew. Chem. Int. Ed. 1981, 20, 570.
4 Naghipur A. ; Reszka K. ; Sapse A.-M. ; Lown J. W. J.Am. Chem. Soc. 1989, 111, 258.
5 Capozzi G. ; Dios A. ; Franck R. W. ; Geer A. ; Marzabaldi C. ; Menichetti S. ; Nativi C. ; Tamarez M. Angew. Chem. Int. Ed. 1996, 35, 777.
6 Capozzi G. ; Falciani C. ; Menichetti S. ; Nativi C. J.Org. Chem. 1997, 62, 2611.
7 Capozzi G. ; Falciani C. ; Menichetti S. ; Nativi C. ; Raffaelli B. Chem. Eur. J. 1999, 5, 1748.
8 Capozzi G. ; Lo Nostro P. ; Menichetti S. ; Nativi C. ; Sarri P. Chem. Commun. 2001, 551.
9 Nair V. ; Mathew B. ; Radharkrishnan K. V. ; Rath N. P. Synlett 2000, 61.
10 Nair V. ; Mathew B. Tetrahedron Lett. 2000, 41, 6919.
11 Nair V. ; Mathew B. ; Rath N. P. ; Vairamani M. ; Prabhakar S. Tetrahedron 2001, 57, 8349.
12 Nair V. ; Mathew B. ; Menon R. S. ; Mathew S. ; Vairamani M. ; Prabhakar S. Tetrahedron 2002, 58, 3235.
13 Nair V. ; Mathew B. ; Thomas S. ; Vairamani M. ; Prabhakar S. J. Chem. Soc., Perkin Trans. 1 2001, 3020.
14 Menichetti S. ; Viglianisi C. Tetrahedron 2003, 59, 5523.
15 Contini A. ; Leone S. ; Menichetti S. ; Viglianisi C. ; Trimarco P. J.Org. Chem. 2006, 71, 5507.
16 Reed A. E. ; Curtiss L. A. ; Weinhold F. Chem. Rev. 1988, 88, 899.
17 Zhou P. ; Ayers P. W. ; Liu S. ; Li T. Phys. Chem. Chem. Phys. 2012, 14, 9890.
18 Priya A. M. ; Senthilkumar L. RSC Adv. 2014, 4, 23464.
19 Yang W. ; Mortier W. J. J.Am. Chem. Soc. 1986, 108, 5708.
20 Liu S. Acta Phys. -Chim. Sin. 2009, 25, 590.
20 刘述斌. 物理化学学报, 2009, 25, 590.
21 Parr R. G. ; Yang W. J.Am. Chem. Soc. 1984, 106, 4049.
22 Yang W. ; Parr R. G. ; Pucci R. J.Chem. Phys. 1984, 81, 2862.
23 Albright T. A. ; Burdett J. K. ; Whangbo M. H. Orbital Interactions in Chemistry Wiley-Interscience: New York, NY, USA 1985.
24 Fujimoto H. ; Fukui K. ; Klopman G. Chemical Reactivity and Reaction Paths Wiley-Interscience: New York, NY, USA 1974.
25 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules Oxford University Press: New York, NY, USA 1989.
26 Anderson J. S. M. ; Melin J. ; Ayers P. W. J.Chem. Theory Comput. 2007, 3, 358.
27 Ayers P. W. Faraday Discuss. 2007, 135, 161.
28 Berkowitz M. J.Am. Chem. Soc. 1987, 109, 4823.
29 Zhou P.-P. ; Liu S. ; Ayers P. W. ; Zhang R. -Q. J. Chem. Phys. 2017.
30 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ; et al Gaussian 09, Revision D., 01, Gaussian, Inc.: Wallingford CT 2013.
31 Becke A. D. J.Chem. Phys. 1993, 98, 5648.
32 Lee C. ; Yang W. ; Parr R. G. Phys. Rev. B 1988, 37, 785.
33 Foster J. P. ; Weinhold F. J.Am. Chem. Soc. 1980, 102, 7211.
34 Reed A. E. ; Weinstock R. B. ; Weinhold F. J.Chem. Phys. 1985, 83, 735.
35 Roy R. K. ; Hirao K. ; Krishnamurty S. ; Pal S. J.Chem. Phys. 2001, 115, 2901.
36 Roy R. K. ; Hirao K. ; Pal S. J.Chem. Phys. 2000, 113, 1372.
37 Roy R. K. ; Pal S. ; Hirao K. J.Chem. Phys. 1999, 110, 8236.
38 Bultnick P. ; Carbó-Dorca R. J.Math. Chem. 2003, 34, 67.
39 Bultnick P. ; Carbó-Dorca R. ; Langenaeker W. J.Chem. Phys. 2003, 118, 4349.
40 Ayers P. W. ; Morell C. ; De Proft F. ; Geerlings P. Chem. Eur. J. 2007, 13, 8240.
41 Geerlings P. ; Proft F. D. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
42 Chattaraj P. K. ; Sarkar U. ; Roy D. R. Chem. Rev. 2006, 106, 2065.
43 Chermette H. J.Comput. Chem. 1999, 20, 129.
44 Parr R. G. ; Yang W. Annu. Rev. Phys. Chem. 1995, 46, 701.
[1] CÁRDENAS Carlos, MUÑOZ Macarena, CONTRERAS Julia, AYERS Paul W., GÓMEZ Tatiana, FUENTEALBA Patricio. Understanding Chemical Reactivity in Extended Systems:Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 631-638.
[2] Zunwei ZHU,Qiaofeng YANG,Zhenzhen XU,Dongxia ZHAO,Hongjun FAN,Zhongzhi YANG. Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 519-527.
[3] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[4] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[5] FU Rong, LU Tian, CHEN Fei-Wu. Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 628-639.
[6] MOHAMED IMRAN P. K., SUBRAMANI K.. Structure-Property Analysis of L-Ornithine and Its Substituted Analogues[J]. Acta Physico-Chimica Sinca, 2009, 25(11): 2357-2365.
[7] LIU Shu-Bin. Conceptual Density Functional Theory and Some Recent Developments[J]. Acta Physico-Chimica Sinca, 2009, 25(03): 590-600.
[8] LIANG Yun-Xiao, SHANG Zhen-Feng, XU Xiu-Fang, ZHAO Xue-Zhuang. Regioselectivity of 1,3-Butadiene Diels-Alder Cycloaddition to C59XH(X=N, B)[J]. Acta Physico-Chimica Sinca, 2008, 24(10): 1811-1816.
[9] ARSLAN Hakan; DEMIRCAN Aydin. Structure and Vibrational Spectra of Tert-butyl N-(2-bromocyclohex-2-enyl)-N-(2-furylmethyl)carbamate[J]. Acta Physico-Chimica Sinca, 2007, 23(11): 1683-1690.
[10] FEI Chun-Hong;ZHANG Ling-Li;YAO Li-Shuang;LV Feng-Zhen;AO Zhi-Min;PENG Zeng-Hui;XUAN Li. Alignment Behavior of Liquid Crystals on the Crosslinked Film of Monomers with Fluorinated Groups[J]. Acta Physico-Chimica Sinca, 2006, 22(09): 1056-1060.
[11] Geng Zhi-Yuan;Wang Yong-Cheng;Wang Han-Qing. Quantum Chemistry Study on Cycloaddition Reaction of Germylene X2Ge (X=H, CH3, F, Cl, Br) and Ethylene[J]. Acta Physico-Chimica Sinca, 2004, 20(12): 1417-1422.
[12] Wang Yong;Li Hao-Ran;Wang Cong-Min;Xu Ying-Jie;Han Shi-Jun. Quantum Chemistry Study on the Cycloaddition Reaction of Dibromocarbene and Formaldehyde[J]. Acta Physico-Chimica Sinca, 2004, 20(11): 1339-1344.
[13] Zhang Wen-Qin;Wang Qin-Geng;Zheng Yan;Xu Li-Yong;Ren Rong-Liang;Liu Jin-Lan. Photochemical Properties of 4,4′-[1,n-alkanediylbis[(E)-2-(4-oxyphenyl) ethenyl]]bispyridine[J]. Acta Physico-Chimica Sinca, 2002, 18(06): 517-521.
[14] Wu Peng, He Shao-Ren. Theoretical Study on the Mechanism of [2+2] Cycloaddition of Ketenimine with Imine[J]. Acta Physico-Chimica Sinca, 2000, 16(03): 243-247.
[15] Zhang Yi-Liang, Li Shen-Min, Yang Zhong-Zhi. Reactivity Analysis of β-propiolactone[J]. Acta Physico-Chimica Sinca, 1999, 15(11): 986-989.