Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (5): 503-513    DOI: 10.3866/PKU.WHXB201709252
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Revealing Molecular Electronic Structure via Analysis of Valence Electron Density
Tian LU*(),Qinxue CHEN
Download: HTML     PDF(3997KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Numerous real space functions have been purposed so far for unveiling chemically interesting molecular electronic structure characteristics, such as chemical bonds, lone pairs, and multicenter electronic conjugations. Among these analysis methods, electron localization function (ELF), Laplacian of electron density (∇2ρ), and deformation density (ρdef) were widely employed in practical research work. It is well known that the analysis of total molecular electron density is not sufficient for revealing much information about the molecular electronic structure like the above-mentioned methods. However, in this work, using several instances and by comparing with the ELF, ∇2ρ, and ρdef values, we show that it is possible to explore molecular electronic structure characteristics if one solely focuses on investigating the valence electron density distribution. It is found that for most cases, analysis of the very simple valence electron density conveys analogous information as ELF, ∇2ρ and ρdef analyses, with additional advantage of reduced computational complexity. We hope that this work will bring chemists' attention to the high importance of valence electron density, which has been largely ignored for a long time. It should also be noticed that the valence electron density analysis is not free from drawbacks, and when this method is unable to provide an informative picture, one has to use other analysis methods.



Key wordsElectron density      Wavefunction analysis      Chemical bond      Electron localization Function      Atoms in molecules      Density functional theory      Laplacian of electron density      Deformation density     
Received: 31 August 2017      Published: 25 September 2017
O641  
Corresponding Authors: Tian LU     E-mail: sobereva@sina.com
Cite this article:

Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709252     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/503

 
 
 
 
 
 
 
 
 
 
1 Koch W. ; Holthausen M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, Germany 2001, pp.24- 28.
2 Parr R. G. ; Yang W. J. Am. Chem. Soc. 1984, 106, 4049.
3 Fu R. ; Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2014, 30, 628.
3 付蓉; 卢天; 陈飞武. 物理化学学报, 2014, 30, 628.
4 Cao J. S. ; Ren Q. ; Chen F. W. ; Lu T. Sci. China Chem. 2015, 45, 1281.
4 曹静思; 任庆; 陈飞武; 卢天. 中国科学:化学, 2015, 45, 1281.
5 Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2012, 28, 1.
5 卢天; 陈飞武. 物理化学学报, 2012, 28, 1.
6 Bader F. W. Atoms in Molecules: A Quantum Theory New York, USA: Oxford University Press, 1994.
7 Matta C. F. ; Boyd R. J. The Quantum Theory of Atoms in Molecules-from Solid State to DNA and Drug Design; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 2007.
8 Lu T. ; Chen F. J. Phys. Chem. A 2013, 117, 3100.
9 Gillespie R. J. ; Popelier P. L. A. Chemical Bonding and Molecular Geometry-From Lewis to Electron Densities New York, NY, USA: Oxford University Press, 2001, pp. 163- 180.
10 Becke A. D. ; Edgecombe K. E. J. Chem. Phys. 1990, 92, 5397.
11 Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2011, 27, 2786.
11 卢天; 陈飞武. 物理化学学报, 2011, 27, 2786.
12 Poater J. ; Duran M. ; Solà M. ; Silvi B. Chem. Rev. 2005, 105, 3911.
13 Manzetti S. ; Lu T. RSC Adv. 2013, 3, 25881.
14 Manzetti S. ; Lu T. ; Behzadi H. ; Estrafili M. D. ; Thi H. L. T. ; Vach H. RSC Adv. 2015, 5, 78192.
15 Emamian S. ; Lu T. ; Moeinpour F. RSC Adv. 2015, 5, 62248.
16 Schmider H. L. ; Becke A. D. J. Mol. Struct. THEOCHEM 2000, 527, 51.
17 Astakhov A. A. ; Tsirelson V. G. Chem. Phys. 2014, 435, 49.
18 De Silva P. ; Corminboeuf C. J. Chem. Theory Comput. 2014, 10, 3745.
19 Jacobsen H. Chem. Phys. Lett. 2013, 582, 144.
20 Hirshfeld F. L. Theor. Chim. Acta 1977, 44, 129.
21 Lu T. ; Chen F. J. Theor. Comp. Chem. 2012, 11, 163.
22 Dunitz J. D. ; Schweizer W. B. ; Seiler P. Helv. Chim. Acta 1983, 66, 123.
23 Eisenstein M. Acta Crystallogr. Sect. B 1979, 35, 2614.
24 Cai Y. ; Luo S. ; Wang Z. ; Xiong J. ; Gu H. J. Materiomics 2017, 3, 130.
25 Cameron T. S. ; Borecka B. ; Kwiatkowski W. J. Am. Chem. Soc. 1994, 116, 1211.
26 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Petersson G. A. ; Nakatsuji H. ; et al Gaussian 16; Gaussian Inc.: Wallingford, CT 2016.
27 Stephens P. J. ; Devlin F. J. ; Chabalowski C. F. ; Frisch M. J. J. Phys. Chem. 1994, 98, 11623.
28 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
29 Lu T. ; Chen F. J. Comput. Chem. 2012, 33, 580.
30 Website of Multiwfn program. http://sobereva.com/multiwfn (accessed Aug 15, 2017).
31 Multiwfn Manual, version 3.4, Section 3.7.4, available at http://sobereva.com/multiwfn (accessed Aug 15, 2017).
32 Zhao Y. ; Truhlar D. Theor. Chem. Acc. 2008, 120, 215.
33 Wüest A. ; Merkt F. J. Chem. Phys. 2003, 118, 8807.
34 Santos J. C. ; Andres J. ; Aizman A. ; Fuentealba P. J. Chem. Theory Comput. 2005, 1, 83.
35 Politzer P. ; Lane P. ; Concha M. C. ; Ma Y. ; Murray J. S. J. Mol. Model. 2007, 13, 305.
36 Clark T. WIREs: Comp. Mol. Sci. 2013, 3, 13.
37 Kozuch S. ; Martin J. M. L. J. Chem. Theory Comput. 2013, 9, 1918.
38 Jensen F. Introduction to Computational Chemistry; John Wiley & Sons: West Sussex, UK 2007, pp.487- 492.
39 Silvi B. ; Savin A. Nature 1994, 371, 683.
40 Fuentealba P. ; Chamorro E. ; Santos J. C. Understanding and Using the Electron Localization Function. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé, A., Ed., Elsevier B.V.: Amsterdam, The Netherlands 2007, p. 57.
41 Bratsch S. G. J. Chem. Educ. 1985, 62, 101.
42 Cotton F. A. ; Murillo C. A. ; Walton R. A. Multiple Bonds between Metal Atoms; Springer Science and Business Media, Inc.: New York, USA 2005.
[1] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[4] Julia CONTRERAS-GARCíA,Weitao YANG. Perspective: Chemical Information Encoded in Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 567-580.
[5] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[6] Andreas SAVIN. Chemical Bonding and Interpretation of Time-Dependent Electronic Processes with Maximum Probability Domains[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 528-536.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[11] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[12] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[13] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[14] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[15] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.