Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (5): 543-550    DOI: 10.3866/PKU.WHXB201709291
ARTICLE     
Synthesis, Characterization, and Antibacterial Activity of Rare Earth-Catechin Complexes
Kang YU1,Cuicui TIAN1,Xia LI1,Xuepin LIAO1,2,3,*(),Bi SHI1,2,3
1 Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, P. R. China
2 Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
3 National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
Download: HTML     PDF(707KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Three kinds of novel coordination compounds [Re3+-C] (Re = La, Gd, Er; C = Catechin) were synthesized by the liquid-phase method, and characterized by Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV) spectrophotometry, X-ray photoelectron spectroscopy (XPS), and coordination number determination. The results indicated that the coordination number of the complexes is 8. Moreover, the antibacterial activities of Re3+-C against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella were evaluated by the Oxford cup, minimum inhibition concentration (MIC), and minimum bactericidal concentration (MBC) approaches. Compared with Re3+ and C, the as-prepared complexes exhibited excellent antimicrobial activity toward the four strains. The MIC of Gd3+-C to these food-borne bacteria was 1.550, 0.0968, 0.775, and 1.550 μmol·mL−1, respectively, while the corresponding MBC values were 3.100, 0.194, 1.550, and 1.550 μmol·mL−1. It is clear that the Gd3+-C complex showed the best antibacterial and germicidal activity against S. aureus.



Key wordsCatechin      Rare earth      Complex      Food-borne bacteria      Antibacterial activity     
Received: 31 July 2017      Published: 29 September 2017
O641  
Fund:  the National Technology Improvement and Industrialization Project of Fundamental Materials, China
Corresponding Authors: Xuepin LIAO     E-mail: xpliao@scu.edu.cn
Cite this article:

Kang YU,Cuicui TIAN,Xia LI,Xuepin LIAO,Bi SHI. Synthesis, Characterization, and Antibacterial Activity of Rare Earth-Catechin Complexes. Acta Phys. -Chim. Sin., 2018, 34(5): 543-550.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709291     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/543

Fig 1 Schematic illustration of chelating reaction of Catechin (C) and Re (a) and the structure of Re3+-C (b).
Fig 2 FT-IR spectra of C and Re3+-C.
Fig 3 UV spectra of C and Re3+-C.
Fig 4 O 1s XPS spectra of C (a) and Re3+-C (b, c, d).
Fig 5 pH reduction of catechin and rare earth chelating reaction systemat different molar ratios.
Re3+-C Inhibition zone diameter/mm
Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa Salmonella
C
La3+ 11.48 ± 0.10 10.18 ± 0.06 10.95 ± 0.03 12.24 ± 0.04
Gd3+ 10.73 ± 0.08 10.50 ± 0.02 8.75 ± 0.01 10.81 ± 0.01
Er3+ 10.84 ± 0.06a 10.73 ± 0.03 9.67 ± 0.05 8.91 ± 0.01
La3+-C 12.22 ± 0.02 16.42 ± 0.08 12.43 ± 0.01 14.07 ± 0.17
Gd3+-C 11.20 ± 0.20 16.39 ± 0.09 11.58 ± 0.42 12.78 ± 0.02
Er3+-C 11.22 ± 0.02 17.95 ± 0.05 11.51 ± 0.01 11.07 ± 0.11
Table 1 Antibacterial activity(inhibition zone) of C, Re3+ and Re3+-C.
Re3+-C MIC/(μmol·mL-1)
Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa Salmonella
C 6.490 6.490 6.490 6.490
La3+ 35.000 70.000 35.000 70.000
Gd3+ 7.800 7.800 3.900 3.900
Er3+ 3.680 3.680 3.680 3.680
La3+-C 1.560 0.098 1.560 1.560
Gd3+-C 1.550 0.097 0.780 1.550
Er3+-C 1.550 0.097 0.770 3.090
Table 2 MIC of C, Re3+ and Re3+-C against four kinds of food-borne bacteria.
Rare earth Complex Strains MIC/(μg∙mL-1) Reference
Sm/Ag/TiO White beads coccus 2.00 × 104 32
RE(Asp)3PlienCl3·3H20 E. roli 40–55 33
S. aureus 110
C. albicans 100–150
RE(DPA)(L)(H2O)]·2H2O E. coli ATCC11229 400–500 34
S. aureus ATCC6358P 450–550
La2O3-KH560-quercetin E. coli 3.13 × 103 35
S. aureus 3.13 × 103
Zn-Ce/ZrPn(n = 1, 2, 3, 4, 5) E. coli ATCC 25922 800–4500 36
S. aureus ATCC 6538 500–2000
[LnL2(NO3)2]NO3 E. coli 16–250 37
K. apneumonia 16–63
P. mirabilis 16–250
S. enteritidis 16–125
S. pyogenes 125–250
E. faecalis > 125
Table 3 Antibacterial activity of rare earth complexes of different ligands.
Re3+-C MBC/(μmol·mL-1)
Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa Salmonella
C 13.000 13.000 13.000 13.000
La3+ 70.000 70.000 70.000 140.000
Gd3+ 7.800 15.600 7.800 7.800
Er3+ 7.350 7.350 7.350 3.680
La3+-C 3.120 0.390 3.120 1.560
Gd3+-C 3.100 0.194 1.550 1.550
Er3+-C 3.090 1.930 6.190 3.090
Table 4 MBC of C, Re3+ and Re3+-C against four kinds of food-borne bacteria.
1 Daglia M. Curr. Opin. Biotechnol. 2011, 23, 174.
2 Ozdal T. ; Capanoglu E. ; Altay F. Food Res. Int. 2013, 51, 954.
3 Carvalho E. ; Mateus N. ; Freitas V. D. Anal. Chim. Acta 2004, 513, 97.
4 Wang X. W. ; Jiang G. ; Du J. G. Acta Phys. -Chim. Sin 2011, 27, 309.
4 王晓巍; 蒋刚; 杜际广. 物理化学学报, 2011, 27, 309.
5 Manna M. S. ; Saha P. ; Ghoshal A. K. RSC Adv. 2014, 4, 26247.
6 Jakobek L. Food Chem. 2015, 175, 556.
7 Oliver S. ; Vittorio O. ; Cirillo G. ; Boyer C. Polymer Chem. 2016, 7, 1529.
8 Das J. ; Ramani R. ; Suraju M. O. Biochim. Biophys. Acta 2016, 1860, 2107.
9 Díaz-Gómez R. ; López-Solís R. ; Obreque-Slier E. ; Toledo-Araya H. LWT-Food Sci. Technol. 2013, 54, 331.
10 Keller A. C. ; Weir T. L. ; Broeckling C. D. ; Ryan E. P. Food Res. Int. 2013, 53, 945.
11 Cushnie T. P. T. ; Lamb A. J. Int. J. Antimicrob. Ag 2005, 26, 343.
12 Hong G. Y. Introduction to Rare Earth Chemistry Beijing: Science Press, 2014, pp. 243- 248.
12 洪广言. 稀土化学导论, 北京: 科学出版社, 2014, 243- 248.
13 Liu P. ; Zhang W. Y. ; Li X. ; Liu Y. Biol. Trace Elem. Res 2007, 120, 141.
14 Wang R. ; Lin H. ; Lin H. K. Acta Phys. -Chim. Sin. 2006, 22, 1377.
14 王蕊; 林海; 林华宽. 物理化学学报, 2006, 22, 1377.
15 Wakabayashi T. ; Ymamoto A. ; Kazaana A. ; Nakano Y. ; Nojiri Y. ; Kashiwazaki M. Biol. Trace Elem. Res 2016, 174, 1.
16 Fujita Y. ; Barnes J. ; Eslamimanesh A. ; Lencka M. M. ; Anderko A. ; Riman R. E. ; Navrotsky A. Environ. Sci. Tech 2015, 49, 9460.
17 Liu H. X. ; Yang X. D. ; Wang K. Chem. J. Chin. Univ 2006, 27, 999.
17 刘会雪; 杨晓达; 王夔. 高等学校化学学报, 2006, 27, 999.
18 Qian C. T. ; Wang C. H. ; Chen Y. F. Acta Chim. Sin. 2014, 72, 883.
18 钱长涛; 王春红; 陈耀峰. 化学学报, 2014, 72, 883.
19 Al-Zoreky N. S. ; Al–Taher A. Y. Ind. Crop. Prod 2015, 65, 241.
20 Yin L. ; Liang C. ; Chen K. X. ; Zhao C. X. ; Yao J. ; Li H. R. Acta Phys. -Chim. Sin. 2017, 33, 1390.
20 尹璐; 梁程; 陈可先; 赵琛烜; 姚加; 李浩然. 物理化学学报, 2017, 33, 1390.
21 Oo C. W. ; Kassim M. J. ; Pizzi A. Ind. Crop. Prod 2009, 30, 152.
22 Tian C. C. ; Zeng W. C. ; Li X. ; Liao X. P. ; Shi B. Prog. Biochem Biophys 2016, 43, 1181.
22 田翠翠; 曾维才; 李霞; 廖学品; 石碧. 生物化学与生物物理进展, 2016, 43, 1181.
23 Wo?nicka E. ; Kopacz M. ; Umbreit M. ; K?os J. J. Inorg. Biochem 2007, 101, 774.
24 Mao H. ; Liao X. P. ; Shi B. Catal. Commun 2011, 12, 1177.
25 Su X. B. ; Dai L. J. ; Chen S. P. ; Lu Y. D. ; Wu Z. H. Chem. Ind. Forest Prod. 2007, 27, 37.
25 苏小宝; 戴丽君; 陈少平; 卢玉栋; 吴宗华. 林产化学与工业, 2007, 27, 37.
26 Chen W. Y. ; Li G. Y. Tanning Chemistry Beijing: China Light Industry Press, 2011, pp. 8- 10.
26 陈武勇; 李国英. 鞣制化学, 北京: 中国轻工业出版社, 2011, 8- 10.
27 Valotteau C. ; Banat I. M. ; Mitchell C. A. ; Lydon H. ; Marchant R. ; Babonneau F. ; Pradier C. M. ; Baccile N. ; Humblot V. Colloids Surf. B: Biointerfaces 2017, 157, 325.
28 Mcknight L. P. W. Environ. Microbiol. Rep 2014, 6, 307.
29 Chistoserdova L. World J. Microb. Biot 2016, 32, 1.
30 Pagano G. ; Guida M. ; Tommasi F. ; Oral R. Ecotox. Environ. Safe. 2015, 115, 40.
31 Chaudhary A. ; Bansal N. ; Gajraj A. ; Singh R. V. J. Inorg. Biochem 2003, 96, 393.
32 Wu J. ; Zhang G. L. ; Liu J. ; Gao H. B. ; Song C. X. ; Du H. R. ; Zhang L. ; Gong Z. P. ; Lv Y. G. J. Rare Earth 2014, 32, 727.
33 Yu H. ; He Q. Z. ; Yang J. ; Zheng W. J. J. Rare Earth 2006, 24, 4.
34 Huang J. ; Xu Y. H. ; Chen X. K. ; Xu D. F. ; Xu Y. M. ; He Q. Z. J. Rare Earth 2012, 30, 586.
35 Wang K. J. ; Wu G. P. ; Li H. X. ; Li M. L. ; Zhang D. Y. ; Feng H. X. ; Fan H. Y. J. Rare Earth 2013, 31, 709.
36 Yang Y. H. ; Dai G. J. ; Tan S. Z. ; Liu Y. L. ; Shi Q. S. ; Ouyang Y. S. J. Rare Earth 2011, 29, 308.
37 Ajlouni A. M. ; Salem Q. A. ; Taha Z. A. ; Hijazi A. K. ; Momani W. A. J. Rare Earth 2016, 34, 986.
[1] Zhe WANG,Kangle JIA,Tongqing LIU,Junwen HU,Xuefeng LI,Jinfeng DONG. pH and Light Reconfigured Complex Emulsions by Stimuli-Responsive Surfactants[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 84-91.
[2] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[3] Liang XIN,Huai SUN. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1179-1188.
[4] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.
[5] Lu YIN,Cheng LIANG,Ke-Xian CHEN,Chen-Xuan ZHAO,Jia YAO,Hao-Ran Li. Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(Ⅱ) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1390-1398.
[6] Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2480-2490.
[7] Cheng-Wei JIN,Ye WANG,Su-Ling XU,Jian-Jun ZHANG. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3, 4-Diethoxybenzoic Acid and 2, 2'-Bipyridine[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2232-2240.
[8] Bao-Hong ZHANG,Guo-Sheng HU,Deng-Sen ZHU,Wen-Ji WANG,Ge-Hui GONG,Wei-Hong DU. Inhibition of Prion Amyloid Peptide Fibril Formation by Peroxovanadium Complexes[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1810-1818.
[9] Jian-Xia HUO,Su-Wei SONG,Cheng-Wei JIN,Ning REN,Li-Na GENG,Jian-Jun ZHANG. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 901-906.
[10] Yan-Qing WANG,Long LI,Lin-Hui NIE,Nan-Nan LI,Cheng-Wu SHI. Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2724-2730.
[11] Jing-Dong. WANG,Shuang. LI,Rong. LÜ,An-Chi. YU. Fluorescence Quenching of Eosin Y by Tyrosine[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1787-1794.
[12] Rong. CHEN,Wo-Hua. ZHOU,Zi-Wen. WU,Xuan. XU,Zhi-Guang. XU. Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1683-1689.
[13] DING Dan-Dan, XU Xuan, WU Zi-Wen, ZHOU Wo-Hua, CHEN Rong, XU Zhi-Guang. Coordination Structures of Metal String Complexes (n, m)[Cr3(PhPyF)4Cl2](n=2, 3, 4; m=2, 1, 0) and Relationship with External Electric Field[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1323-1330.
[14] DING Wan-Jian, FANG Wei-Hai, CHAI Zhi-Fang, WANG Dong-Qi. Performance of Twelve Density Functional Theory Methods in the Characterization of Three Trivalent Uranium Complexes[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1283-1301.
[15] XIE Xing-Xing, FEI Zhao-Yang, ZOU Chong, LI Zheng-Zhou, CHEN Xian, TANG Ji-Hai, CUI Mi-Fen, QIAO Xu. Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1153-1161.