Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (5): 514-518    DOI: 10.3866/PKU.WHXB201710101
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms
Farnaz HEIDAR-ZADEH1,2,3,Paul W. AYERS1,*()
1 Department of Chemistry & Chemical Biology; McMaster University; Hamilton, Ontario, L8P 4Z2, Canada
2 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium
3 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
Download: HTML     PDF(294KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this study, we show how to generalize Hirshfeld partitioning methods to possibly include non-spherical proatom densities. While this generalization is numerically challenging (requiring global optimization of a large number of parameters), it is conceptually appealing because it allows the proatoms to be pre-polarized, or even promoted, to a state that more closely resembles the atom in a molecule. This method is based on first characterizing the convex set of proatom densities associated with the degenerate ground states of isolated atoms and atomic ions. The preferred orientation of the proatoms' densities are then obtained by minimizing the information–theoretic distance between the promolecular and molecular densities. If contributions from excited states (and not just degenerate ground states) are included in the convex set, this method can describe promoted atoms. While the procedure is intractable in general, if one includes only atomic states that have differing electron-numbers and/or spins, the variational principle becomes a simple convex optimization with a single unique solution.



Key wordsHirshfeld partitioning      Stockholder atoms in molecules      Nonspherical proatoms      Information theory      Degenerate ground states      Promoted atomic reference states, Electron density      Conceptual density functional theory     
Received: 31 August 2017      Published: 10 October 2017
Corresponding Authors: Paul W. AYERS     E-mail: ayers@mcmaster.ca
Cite this article:

Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201710101     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/514

1 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules New York, NY, USA: Oxford UP, 1989.
2 Yang W. ; Cohen A. J. ; Proft F. D. ; Geerlings P. J. Chem. Phys. 2012, 136 (14), 144110.
3 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103 (5), 1793.
4 Gázquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
5 Liu S. -B. Acta Phys. -Chim. Sin. 2009, 25 (3), 590.
6 Heidar-Zadeh F. ; Miranda-Quintana R. A. ; Verstraelen T. ; Bultinck P. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777.
7 Heidar-Zadeh F. ; Richer M. ; Fias S. ; Miranda-Quintana R. A. ; Chan M. ; Franco-Perez M. ; Gonzalez-Espinoza C. E. ; Kim T. D. ; Lanssens C. ; Patel A. H. G. ; et al Chem. Phys. Lett. 2016, 660, 307.
8 Geerlings P. ; De Proft F. Phys. Chem. Chem. Phys. 2008, 10 (21), 3028.
9 Fuentealba P. ; Parr R. G. J. Chem. Phys. 1991, 94 (8), 5559.
10 Senet P. J. Chem. Phys. 1996, 105 (15), 6471.
11 Franco-Pérez M. ; Ayers P. W. ; Gázquez J. L. ; Vela A. J. Chem. Phys. 2015, 143 (24), 244117.
12 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101 (5), 520.
13 Echegaray E. ; Cardenas C. ; Rabi S. ; Rabi N. ; Lee S. ; Zadeh F. H. ; Toro-Labbe A. ; Anderson J. S. M. ; Ayers P. W. J. Mol. Model. 2013, 19 (7), 2779.
14 Echegaray E. ; Rabi S. ; Cardenas C. ; Zadeh F. H. ; Rabi N. ; Lee S. ; Anderson J. S. M. ; Toro-Labbe A. ; Ayers P. W. J. Mol. Model. 2014, 20, 2162.
15 Yang W. ; Mortier W. J. J. Am. Chem. Soc. 1986, 108 (19), 5708.
16 Ayers P. W. ; Morrison R. C. ; Roy R. K. J. Chem. Phys. 2002, 116 (20), 8731.
17 Bultinck P. ; Fias S. ; Van Alsenoy C. ; Ayers P. W. ; Carbó-Dorca R. J. Chem. Phys. 2007, 127 (3), 034102.
18 Echegaray E. ; Toro-Labbe A. ; Dikmenli K. ; Heidar-Zadeh F. ; Rabi N. ; Rabi S. ; Ayers P. W. ; Cardenas C. ; Parr R. G. ; Anderson J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed., Springer International Publishing: Cham, Switzerland 2017, p. 269.
19 Fuentealba P. ; Pérez P. ; Contreras R. J. Chem. Phys. 2000, 113 (7), 2544.
20 Tiznado W. ; Chamorro E. ; Contreras R. ; Fuentealba P. J. Phys. Chem. A 2005, 109 (14), 3220.
21 Zadeh F. H. ; Fuentealba P. ; Cardenas C. ; Ayers P. W. Phys. Chem. Chem. Phys. 2014, 16 (13), 6019.
22 Rong C. ; Lu T. ; Liu S. J. Chem. Phys. 2014, 140 (2), 024109.
23 Morgenstern A. ; Wilson T. R. ; Eberhart M. E. J. Phys. Chem. A 2017, 121 (22), 4341.
24 Sablon N. ; Proft F. D. ; Ayers P. W. ; Geerlings P. J. Chem. Phys. 2007, 126 (22), 224108.
25 Olah J. ; Van Alsenoy C. ; Sannigrahi A. B. J. Phys. Chem. A 2002, 106 (15), 3885.
26 Liu S. J. Chem. Phys. 2014, 141 (19), 194109.
27 Zhou X.-Y. ; Rong C. Y. ; Lu T. ; Liu S. B. Acta Phys. -Chim. Sin. 2014, 30 (11), 2055.
28 Mulliken R. S. J. Chem. Phys. 1955, 23 (10), 1833.
29 Mulliken R. S. J. Chem. Phys. 1955, 23 (10), 1841.
30 Mulliken R. S. J. Chem. Phys. 1955, 23 (12), 2338.
31 Mulliken R. S. J. Chem. Phys. 1955, 23 (12), 2343.
32 L?wdin P. -O. Adv. Quantum Chem. 1970, 5, 185.
33 Davidson E. R. J. Chem. Phys. 1967, 46 (9), 3320.
34 Reed A. E. ; Weinstock R. B. ; Weinhold F. J. Chem. Phys. 1985, 83 (2), 735.
35 Lu W. C. ; Wang C. Z. ; Schmidt M. W. ; Bytautas L. ; Ho K. M. ; Ruedenberg K. J. Chem. Phys. 2004, 120 (6), 2629.
36 Bader R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon: Oxford, UK 1990.
37 Heidarzadeh F. ; Shahbazian S. Int. J. Quantum Chem. 2010, 111 (12), 2788.
38 Zadeh F. H. ; Shahbazian S. Theor. Chem. Acc. 2010, 128 (2), 175.
39 Morgenstern A. ; Morgenstern C. ; Miorelli J. ; Wilson T. ; Eberhart M. E. Phys. Chem. Phys. Chem. 2016, 18 (7), 5638.
40 Hirshfeld F. L. Theor. Chim. Act. 1977, 44, 129.
41 Guerra C. F. ; Handgraaf J. W. ; Baerends E. J. ; Bickelhaupt F. M. J. Comput. Chem. 2004, 25 (2), 189.
42 Nalewajski R. F. ; Parr R. G. Proc. Natl. Acad. Sci. 2000, 97, 8879.
43 Nalewajski R. F. ; Parr R. G. J. Phys. Chem. A 2001, 105 (31), 7391.
44 Parr R. G. ; Ayers P. W. ; Nalewajski R. F. J. Phys. Chem. A 2005, 109 (17), 3957.
45 Davidson E. R. ; Chakravorty S. Theor. Chim. Acta 1992, 83 (5-6), 319.
46 Heidar-Zadeh F. ; Ayers P. W. ; Verstraelen T. ; Vinogradov I. ; Vohringer-Martinez E. ; Bultinck P. J. Phys. Chem. A submitted 2017.
47 Heidar-Zadeh F. ; Ayers P. W. ; Bultinck P. J. Chem. Phys. 2014, 141, 094103.
48 Heidar-Zadeh F. ; Ayers P. W. J. Chem. Phys. 2015, 142 (4), 044107.
49 Heidar-Zadeh F. ; Vinogradov I. ; Ayers P. W. Theor. Chem. Acc. 2017, 136 (4), 54.
50 Ayers P. W. J. Chem. Phys. 2000, 113 (24), 10886.
51 Ayers P. W. Theor. Chem. Acc. 2006, 115, 370.
52 Heidar-Zadeh F. ; Ayers P. W. Theor. Chem. Acc. 2017, 136 (8), 92.
53 Verstraelen T. ; Vandenbrande S. ; Heidar-Zadeh F. ; Vanduyfhuys L. ; Van Speybroeck V. ; Waroquier M. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (8), 3894.
54 Heidar-Zadeh F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, McMaster University, Canada, and Ghent University, Belgium 2017.
55 Misquitta A. J. ; Stone A. J. ; Fazeli F. J. Chem. Theory Comp. 2014, 10 (12), 5405.
56 Verstraelen T. ; Ayers P. W. ; Van Speybroeck V. ; Waroquier M. J. Chem. Theory Comp. 2013, 9 (5), 2221.
57 Bultinck P. ; Van Alsenoy C. ; Ayers P. W. ; Carbo-Dorca R. J. Chem. Phys. 2007, 126 (14), 144111.
58 Bultinck P. ; Ayers P. W. ; Fias S. ; Tiels K. ; Van Alsenoy C. Chem. Phys. Lett. 2007, 444 (1?3), 205.
59 Ghillemijn D. ; Bultinck P. ; Van Neck D. ; Ayers P. W. J. Comput. Chem. 2011, 32, 1561.
60 Manz T. A. ; Sholl D. S. J. Chem. Theory Comp. 2010, 6 (8), 2455.
61 Manz T. A. ; Sholl D. S. J. Chem. Theory Comp. 2012, 8 (8), 2844.
62 Lee L. P. ; Limas N. G. ; Cole D. J. ; Payne M. C. ; Skylaris C. K. ; Manz T. A. J. Chem. Theory Comp. 2014, 10 (12), 5377.
63 Limas N. G. ; Manz T. A. RSC Adv. 2016, 6 (51), 45727.
64 Manz T. A. ; Limas N. G. RSC Adv. 2016, 6 (53), 47771.
65 Lillestolen T. C. ; Wheatley R. J. Chem. Commun. 2008, 45, 5909.
66 Lillestolen T. C. ; Wheatley R. J. J. Chem. Phys. 2009, 131, 144101.
67 Verstraelen T. ; Ayers P. W. ; Van Speybroeck V. ; Waroquier M. Chem. Phys. Lett. 2012, 545, 138.
68 Levy M. Phys. Rev. A 1982, 26 (3), 1200.
69 Lieb E. H. Int. J. Quantum Chem. 1983, 24 (3), 243.
70 Ayers P. W. Phys. Rev. A 2006, 73, 012513.
71 Cardenas C. ; Ayers P. W. ; Cedillo A. J. Chem. Phys. 2011, 134, 174103.
[1] GONZáLEZ Marco Martínez, CáRDENAS Carlos, RODRíGUEZ Juan I., LIU Shubin, HEIDAR-ZADEH Farnaz, MIRANDA-QUINTANA Ramón Alain, AYERS Paul W.. Quantitative Electrophilicity Measures[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 662-674.
[2] Mojtaba ALIPOUR. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 407-413.
[3] Roman F NALEWAJSKI. Chemical Reactivity Description in Density-Functional and Information Theories[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2491-2509.
[4] ZHONG Ai-Guo, HUANG Ling, JIANG Hua-Jiang. Structure, Spectroscopy and Reactivity of H2S Bonding to Metal(II) Porphyrins[J]. Acta Physico-Chimica Sinca, 2011, 27(04): 837-845.
[5] WANG Xiao-Wei, JIANG Gang, DU Ji-Guang. Structures, Infrared Spectra and Reactivities of (+)-Catechin Metal Complexes[J]. Acta Physico-Chimica Sinca, 2011, 27(02): 309-314.