Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (5): 528-536    DOI: 10.3866/PKU.WHXB201710111
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
Chemical Bonding and Interpretation of Time-Dependent Electronic Processes with Maximum Probability Domains
Andreas SAVIN*()
Download: HTML     PDF(7348KB) Export: BibTeX | EndNote (RIS)      


Tools have been designed obtain information about chemical bonds from quantum mechanical calculations. They work well for solutions of the stationary Schrödinger equation, but it is not clear whether Lewis electron pairs they aim to reproduce survive in time-dependent processes, in spite of the underlying Pauli principle being obeyed in this regime. A simple model of two same-spin non-interacting fermions in a one-dimensional box with an opaque wall, is used to study this problem, because it allows presenting the detailed structure of the wave function. It is shown that ⅰ) oscillations persisting after the Hamiltonian stopped changing produce for certain time intervals states where Lewis electron pairs are spatially separated, and ⅱ) methods (like density analysis, or the electron localization function) that are widely used for describing bonding in the stationary case, have limitations in such situations. An exception is provided by the maximum probability domain (the spatial domain that maximizes the probability to find a given number of particles in it). It is conceptually simple, and satisfactorily describes the phenomenon.

Key wordsChemical bond      Time-dependent Schrödinger equation      Particle in a box with opaque wall     
Received: 01 September 2017      Published: 11 October 2017
Corresponding Authors: Andreas SAVIN     E-mail:
Cite this article:

Andreas SAVIN. Chemical Bonding and Interpretation of Time-Dependent Electronic Processes with Maximum Probability Domains. Acta Phys. -Chim. Sin., 2018, 34(5): 528-536.

URL:     OR

1 Messiah A. Quantum Mechanics; North Holland Publishing Company: Amsterdam, The Netherlands 1967.
2 Flügge S. Practical Quantum Mechanics; Springer: Berlin, Germany 1999, p.14.
3 Wigner E. Phys. Rev 1934, 46, 1002.
4 Lewis G. N. J. Am. Chem. Soc. 1916, 38, 762.
5 Durrant T. R. ; Hodgson M. J. P. ; Ramsden J. D. ; Godby R. W. arXiv 2015, 1505.07687.
6 Artmann K. Z. Naturforschg 1946, 1, 426.
7 Scemama A. ; Caffarel M. ; Savin A. J. Comput. Chem 2007, 28, 442.
8 Lüchow A. ; Petz R. J. Comput. Chem 2011, 32, 2619.
9 Savin A. Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr; Sen, K. D. Ed., World Scientific: Singapore 2002, p. 43.
10 Bader R. F. W. Atoms in Molecules: A Quantum Theory Oxford, UK: Oxford University Press, 1990.
11 Becke A. D. ; Edgecombe K. E. J. Chem. Phys. 1990, 92, 5397.
12 Burnus T. ; Marques M. A. L. ; Gross E. K. U. Phys. Rev. A 2005, 71, 010501.
13 Sini G. ; Maitre P. ; Hiberty P. C. ; Shaik S. S. J. Mol. Struct. THEOCHEM 1991, 229, 163.
14 Petersilka M. ; Gross E. Laser Physics 1999, 9, 1.
15 Dobson J. F. J. Chem. Phys. 1993, 98, 8870.
16 Wolfram S. Mathematica Edition, Version 11.1; Wolfram Research, Inc.: Champaign, Illinois, USA 2017.
[1] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[2] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[3] HUANG Hao-Jie, XU Jiang. First-Principles Study into the Effect of Substitutional Al Alloying on the Mechanical Properties and Electronic Structure of D88-Ti5Si3[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 253-260.
[4] LI Jin-Xia, ZHANG Cong-Jie. Structures and Properties of BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane Configuration[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 423-430.
[5] LI Na, CHEN Xi, XUE Qi-Kun. Contribution of Chemical Bonding to the Force in Atomic Force Microscopy[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 205-209.
[6] SUN Qiang, SHI Jin-Sheng. s1p1 Configurational Energy Levels in Different Hosts[J]. Acta Phys. -Chim. Sin., 2009, 25(10): 2137-2142.
[7] MO Li-Xin;ZENG Yan-Li;ZHANG Xue-Ying;ZHENG Shi-Jun;MENG Ling-Peng. Topological Studies on the Structures of the Neutral and Charged BH4[J]. Acta Phys. -Chim. Sin., 2007, 23(01): 120-123.
[8] Wu Hai-Shun;Xu Xiao-Hong;Zhang Cong-Jie;Zhang Fu-Qiang. Structure and Chemical Bonding of (XN)4R4 Cubic Clusters[J]. Acta Phys. -Chim. Sin., 2002, 18(02): 127-130.
[9] Chen Wen-Wu,Sheng Liu-Si,Ding Chuan-Fan,Qi Fei,Zhang Yun-Wu,Kong Fan-Ao. The Measurement of Adiabatic Lonization Potential of Si(CH3)3Cl and Chemical Bond Energies of Si(CH3)3Cl+[J]. Acta Phys. -Chim. Sin., 1996, 12(06): 560-563.
[10] Wang Xue-Ye,Kang De-Shan,Li Chong-He,Qin Pei,Chen Nian-Yi. Regularity and Prediction of Molten Salt Phase Diagrams of Monovalent and Quadrivalent Metal Halide Binary Systems[J]. Acta Phys. -Chim. Sin., 1996, 12(01): 67-70.
[11] Zhao Liang-Zhong. The Cu-O Bond Type and Partial Charge on Oxygen in High-Tc Superconductors[J]. Acta Phys. -Chim. Sin., 1995, 11(11): 1053-1056.
[12] Sheng Liu-Si, QI Fei, Zhang Yun-Wu, Chen Wen-Wu, Wang Zhao-Hui, Ding Chuan-Fan, Kong Fan-Ao. The Measurement of the Ionization Potential and the Bond Energy Si(CH3)2Cl2[J]. Acta Phys. -Chim. Sin., 1995, 11(10): 870-872.
[13] Hong Gong-Yi,Li Le-Min,Xu Guang-Xian,Lin Xian-Jie. The Linkage Isomerism of Lanthanum Monocarboxide[J]. Acta Phys. -Chim. Sin., 1995, 11(06): 481-483.
[14] Cao Ze-Xing; Liang Guo-Ming; Tian An-Min; Yan Guo-Sen; Tang Ao-Qing; Li Qian-Shu. The Bonding Properties for Linear Carbon Element Clusters[J]. Acta Phys. -Chim. Sin., 1993, 9(06): 770-775.
[15] Dong Nan; Zhu Long-Guan; Wu Nian-Ci. Electronic Structure and Chemical Bond of Complex La(NO3)3·bipy·2H2O·(B-15-C-5)[J]. Acta Phys. -Chim. Sin., 1993, 9(02): 252-255.