Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (5): 519-527    DOI: 10.3866/PKU.WHXB201710126
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions
Zunwei ZHU1,Qiaofeng YANG1,Zhenzhen XU1,2,*(),Dongxia ZHAO1,*(),Hongjun FAN2,Zhongzhi YANG1
1 School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning Province, P. R. China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
Download: HTML     PDF(642KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Regioselectivities of electrophilic addition reactions of hydrogen chloride to asymmetric alkenes and benzeneselenenyl bromide to substituted styrenes have been investigated by using reactivity descriptors, including Fukui function f(r), local softness s(r), generalized Fukui function fG(r), and generalized local softness sG(r). All of them are obtained from the finite difference approximation method calculated by ab initio method at MP2/6-311++G(d, p) level of theory and our ABEEMσπ model, respectively. According to the generalized version of the local hard-soft and acid-base (HSAB) principle, the forecasted regioselectivities of our investigated additions using the ABEEMσπ model are in fair agreement with the experimental values. In particular, we can also rationalize their reaction rate constants by the generalized local softness, i.e., the softest the site is, the easiest the reaction is. Hence, the generalized reactivity descriptors work quite well.



Key wordsFukui function      Local softness      Local hard-soft and acids-bases (HSAB) principle      Electrophilic addition reactions      Finite difference approximation      ABEEMσπ model     
Received: 30 August 2017      Published: 12 October 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21483083);the National Natural Science Foundation of China(21483083, 21133005);the Natural Science Foundation of Liaoning Province, China(2014020150)
Corresponding Authors: Zhenzhen XU,Dongxia ZHAO     E-mail: jane_xu@dicp.ac.cn;zhaodxchem@lnnu.edu.cn
Cite this article:

Zunwei ZHU,Qiaofeng YANG,Zhenzhen XU,Dongxia ZHAO,Hongjun FAN,Zhongzhi YANG. Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions. Acta Physico-Chimica Sinca, 2018, 34(5): 519-527.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201710126     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/519

 
Type of ABEEMσπ parameter χ* 2η*
Cl17―Ph―C626=C62 C66 in ―Ph 2.500 6.800
π66 3.850 94.150
C626 2.500 7.200
π626 3.790 94.150
Cl17 3.010 20.099
C62=C64―R C62 2.500 10.200
π62 3.500 80.319
C64 2.600 6.200
π64 3.580 88.150
Se― 1.800 34.970
Br― 2.880 70.019
σC-Se 4.900 35.000
σSe-Br 6.950 75.000
lpCl- 5.536 46.900
lpBr- 5.965 70.000
lpBe- 3.700 7.164
 
Finite difference approximation ABEEMσπ model
sMA sAM sAMG sMAG 103sMA 103sAMG 10∆sMAG 10∆sMAG
ethene 0.589 0.589 2.647 2.647 0.069 0.069 0.526 0.526
propene 0.533 0.581 6.017 5.579 2.099 9.250 0.739 1.760
1-butene 0.549 0.556 8.863 8.779 2.867 5.727 0.981 2.012
2-methylpropene 0.604 0.627 8.195 7.924 3.008 6.643 0.964 2.122
 
Finite difference approximation ABEEMσπ model
f+ fG+ s+ sG+ f fG s sG
HCl H 0.7503 1.5007 1.5446 3.0893 0.2855 0.5709 0.0133 0.0265
f- fG- s- sG- f fG s sG
ethene CMA 0.4242 2.5451 0.9560 5.736 0.1196 0.7176 0.0132 0.0791
CAM 0.4242 2.5451 0.9560 5.736 0.1196 0.7176 0.0132 0.0791
propene CMA 0.4043 3.6388 1.0118 9.106 0.0796 0.7168 0.0112 0.1004
CAM 0.3849 3.4639 0.9632 8.668 0.1607 1.4464 0.0225 0.2025
1-butene CMA 0.3952 4.7424 0.9960 11.952 0.0623 0.7481 0.0104 0.1246
CAM 0.3924 4.7090 0.9890 11.868 0.1139 1.3672 0.0190 0.2277
2-methylpropene CMA 0.3842 4.6099 0.9404 11.285 0.0632 0.7580 0.0102 0.1229
CAM 0.3749 4.4989 0.9178 11.013 0.1227 1.4724 0.0199 0.2387
 
X―PhCH=CH2 HF/STO-3G ABEEMσπ
qMA qAM qMA qAM
H -0.128 -0.057 -0.125 -0.054
3-Cl -0.122 -0.057 -0.116 -0.042
4-Cl -0.122 -0.058 -0.116 -0.042
4-CH3 -0.129 -0.057 -0.123 -0.051
 
X―PhCH=CH2 finite difference approach ABEEMσπ Model aMA: AM
sMA sAM sMAG sAMG 104sMA 104sAM 102sMAG 102sAMG
H 0.841 1.457 8.915 18.780 1.666 1.680 4.683 4.711 78:22
3-Cl 0.854 1.413 9.133 18.066 1.636 1.649 4.600 4.629 59:41
4-Cl 0.857 1.442 9.183 18.534 1.644 1.658 4.625 4.652 76:24
4-CH3 0.853 1.517 7.128 19.754 1.579 1.593 6.689 6.721 86:14
 
 
1 Yang Z. -Z. ; Ding Y. -L. ; Zhao D. -X. ChemPhysChem 2008, 9, 2379.
2 Suresh C. H. ; Koga N. ; Gadre S. R. J. Org. Chem. 2001, 66, 6883.
3 Aizman A. ; Contreras R. ; Galvan M. ; Cedillo A. ; Santos J. C. ; Chamorro E. J. Phys. Chem. A 2002, 106, 7844.
4 Menendez M. I. ; Suarez D. ; Sorod J. A. ; Sordo T. L. J. Comput. Chem. 1995, 16, 659.
5 Benson S. W. ; Bose A. N. J. Chem. Phys. 1963, 39, 3463.
6 Bose A. N. ; Benson S. W. J. Chem. Phys. 1963, 38, 878.
7 Luh T. -Y. ; So W. -H. ; Cheung K. S. ; Tam S. W. J. Org. Chem. 1985, 50, 3051.
8 Rauk A. Orbital Interaction Theory of Organic Chemistry, 2nd ed., John Wiley & Sons, Inc.: New York, USA 2001.
9 Sathre J. L. ; Thomas T. D. ; Svensson S. J. J. Chem. Soc., Perkin Trans 2 1997, 28, 749.
10 Markovnikov V. Ann. Chem. Pharm. 1870, 153, 228.
11 Chandra A. K. ; Nguren M. T. J. Comput. Chem. 1998, 19, 195.
12 Chandra A. K. ; Nguyen M. T. J. Phys. Chem. A 1998, 102, 6181.
13 Damoun S. ; Woude V. D. ; Mendez F. ; Geerlings P. J. Phys. Chem. A 1997, 101, 886.
14 Geerlings P. ; De Proft F. Int. J. Quantum Chem. 2000, 80, 227.
15 Nguyen L. T. ; De Proft F. ; Dao V. L. ; Nguyen M. T. ; Geerlings P. J. Phys. Orgs. Chem. 2003, 16, 615.
16 Nguyen L. T. ; Le T. N. ; Proft F. D. ; Chandra A. K. ; Langenaeker W. ; Nguyen M. T. ; Geerlings P. J. Am. Chem. Soc. 1999, 121, 5992.
17 Sengupta D. ; Chandra A. K. ; Nguren M. T. J. Org. Chem. 1997, 62, 6404.
18 Li Y. ; Evans J. N. S. J. Am. Chem. Soc. 1995, 117, 7756.
19 Gazquez J. L. ; Mendez F. J. Phys. Chem. 1994, 98, 4591.
20 Geerlings P. ; Proft F. D. ; Langenaeker W. Adv. Quantum Chem. 1998, 33, 303.
21 Xu Z. -Z. ; Zhao D. -X. ; Yang Z. -Z. Chin. Sci. Bull. 2012, 57, 2787.
22 Zhao D. -X. ; Xu Z. -Z. ; Yang Z. -Z. Int. J. Quantum Chem. 2013, 113, 1116.
23 Geerlings P. ; Proft F. D. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
24 Parr R. G. ; Yang W. Density Functional Theory of Atom and Molecules New York: Oxford University Press, 1989.
25 Parr R. G. ; Yang W. T. J. Am. Chem. Soc. 1984, 106, 4049.
26 Yang Y. ; Parr R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.
27 Padmanabhan J. ; Parthasarathi R. ; Elango M. ; Subramanian V. ; Krishnamoorthy B. S. ; Gutierrez-Oliva S. ; Toro-Labb A. ; Roy D. R. ; Chattaraj P. K. J. Phys. Chem. A 2007, 111, 9130.
28 Baekelandt B. G. ; Janssens G. O. A. ; Toufar H. ; Mortier W. J. ; Schoongeydt R. A. J. Phys. Chem. 1995, 99, 9784.
29 Baekelandt B. G. ; Mortier W. J. ; Lievens J. L. ; Schoonheydt R. A. J. Am. Chem. Soc. 1991, 113, 6730.
30 Baekelandt B. G. ; Mortier W. J. ; Schoonheydt R. A. The EEM Approach to Chemical Hardness in Molecules and Solids: Fundamentals and Applications, Structruce and Bonding; Springer: Berlin Heidelberg, Germany 1993, pp. 187- 227.
31 Bultinck P. ; Langenaeker W. ; Lahorte P. ; De Proft F. ; Geerlings P. ; Waroquier M. ; Tollenaere J. P. J. Phys. Chem. A 2002, 106, 7887.
32 Bultinck P. ; Langenaeker W. ; Lahorte P. ; Proft F. D. ; Geerlings P. ; Alsenoy C. V. ; Tollenaere J. P. J. Phys. Chem. A 2002, 106, 7895.
33 Janssens G. O. A. ; Toufar H. ; Baekelandt B. G. ; Mortier W. J. ; Schoonheydt R. A. Stud. Surf. Sci. Cat. 1997, 105, 725.
34 Mortier W. J. ; Ghosh S. K. ; Shankar S. J. Am. Chem. Soc. 1986, 108, 4315.
35 Cong Y. ; Yang Z. Z. Chem. Phys. Lett. 2000, 316, 324.
36 Yang Z. -Z. ; Wang J. -J. ; Zhao D. -X. J. Comput. Chem. 2014, 35, 1690.
37 Zhao D. X. ; Liu C. ; Wang F. F. ; Yu C. Y. ; Gong L. D. ; Liu S. B. ; Yang Z. Z. J. Chem. Theory Comput. 2010, 6, 795.
38 Liu C. ; Li Y. ; Han B. -Y. ; Gong L. -D. ; Lu L. -N. ; Yang Z. -Z. ; Zhao D. -X. J. Chem. Theory Comput. 2017, 13, 2098.
39 Liu L. -L. ; Yang Z.-Z. ; Zhao D. -X. ; Gong L. -D. ; Liu C. RSC Adv. 2014, 4, 52083.
40 Wu Y. ; Yang Z. Z. J. Phys. Chem. 2004, 108, 7563.
41 Yang Z. Z. ; Cui B. Q. J. Chem. Theory Comput. 2007, 3, 1561.
42 Yang Z. Z. ; Qian P. J. Chem. Phys. 2006, 125, 064311.
43 Yang Z. Z. ; Wu Y. ; Zhao D. X. J. Chem. Phys. 2004, 120, 2541.
44 Yang Z. Z. ; Zhang Q. J. Comput. Chem. 2006, 27, 1.
45 Zhang Q. ; Yang Z. Z. Chem. Phys. Lett. 2005, 403, 242.
46 Wang C. S. ; Yang Z. Z. J. Chem. Phys. 1999, 110, 6189.
47 Yang Z. Z. ; Wang C. S. J. Phys. Chem. A 1997, 101, 6315.
48 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Montgomery Jr. J. A. ; Vreven T. ; Kudin K. N. ; Burant J. C. ; et al Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA 2004.
49 Derouane E. G. ; Fripiat J. G. ; Ballmoos R. V. J. Phys. Chem. 1990, 94, 1687.
50 Wilson M. S. ; Ichikawa S. J. Phys. Chem. 1989, 93, 3087.
51 Torrent-Sucarrat M. ; Proft F. D. ; Geerlings P. ; Ayers P. W. Chem. Eur. J. 2008, 14, 8652.
52 Huzinaka S. ; Sakai Y. ; Miyoshi E. ; Narita S. J. Chem. Phys. 1990, 93, 3319.
53 Jakalian A. ; Bush B. ; Jack D. B. ; Bayly C. I. J. Comput. Chem. 2000, 21, 132.
[1] CÁRDENAS Carlos, MUÑOZ Macarena, CONTRERAS Julia, AYERS Paul W., GÓMEZ Tatiana, FUENTEALBA Patricio. Understanding Chemical Reactivity in Extended Systems:Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 631-638.
[2] Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 497-502.
[3] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[4] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[5] FU Rong, LU Tian, CHEN Fei-Wu. Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 628-639.
[6] MOHAMED IMRAN P. K., SUBRAMANI K.. Structure-Property Analysis of L-Ornithine and Its Substituted Analogues[J]. Acta Physico-Chimica Sinca, 2009, 25(11): 2357-2365.
[7] LIU Shu-Bin. Conceptual Density Functional Theory and Some Recent Developments[J]. Acta Physico-Chimica Sinca, 2009, 25(03): 590-600.
[8] Zhang Yi-Liang, Li Shen-Min, Yang Zhong-Zhi. Reactivity Analysis of β-propiolactone[J]. Acta Physico-Chimica Sinca, 1999, 15(11): 986-989.