Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (5): 537-542    DOI: 10.3866/PKU.WHXB201710161
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study
Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR*()
Download: HTML     PDF(951KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Herein we have investigated the interaction between hydrazoic acid (HN3) and a pristine graphyne system based on density functional theory (DFT) method using generalized gradient approximation. The van der Waals dispersion correction is also considered for predicting the possibility of using the graphyne system for detection of hydrazoic acid. Pristine graphyne has a band gap of 0.453 eV, which decreases to 0.424 eV when HN3 is adsorbed on graphyne. The electrical conductivity of HN3-adsorbed graphyne is greater than that of its pristine counterpart. Charge transfer analysis reveals that the HN3-adsorbed graphyne system behaves as an n-type semiconductor; however, its pristine analogue acts as an intrinsic semiconductor. Pristine graphyne has zero dipole moment; however, its interaction with HN3 increases its dipole moment. The electronic properties of graphyne is significantly influenced by the presence of HN3, leading to the possibility of designing graphyne-based sensors for HN3 detection.



Key wordsGraphyne      HN3 molecule      DFT      Electronic property      Adsorption      Gas sensor     
Received: 02 August 2017      Published: 16 October 2017
Fund:  JD is thankful to Department of Science and Technology, New Delhi, India for the INSPIRE Fellowship Award (Grant No. DST/INSPIRE Fellowship/2015/IF150892)
Corresponding Authors: Utpal SARKAR     E-mail: utpalchemiitkgp@yahoo.com
Cite this article:

Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201710161     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/537

 
System D Eads/eV Eg/eV Q/e μ/Debye
without vdW with vdW without vdW with vdW without vdW with vdW without vdW with vdW without vdW with vdW
HN3 adsorbed graphyne 2.884 2.884 −0.550 −0.725 0.424 0.424 0.078 0.021 0.173 0.173
 
 
 
 
1 Kroto H. W. ; Heath J. R. ; O'Brien S. C. ; Curl R. F. ; Smalley R. E. Nature 1985, 318, 162.
2 Iijima S. Nature 1991, 354, 56.
3 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
4 Georgakilas V. ; Perman J. A. ; Tucek J. ; Zboril R. Chem. Rev. 2015, 115, 4744.
5 Lu H. ; Li S. -D. J. Mater. Chem. C 2013, 1, 3677.
6 Yang M. -Q. ; Zhang N. ; Xu Y. -J. ACS Appl. Mater. Interfaces 2013, 5, 1156.
7 Deng W. -Q. ; Matsuda Y. ; Goddard W. A. J. Am. Chem. Soc. 2007, 129, 9834.
8 Romo-Herrera J. M. ; Terrones M. ; Terrones H. ; Meunier V. ACS Nano 2008, 2, 2585.
9 Baughman R. H. ; Eckhardt H. ; Kertesz M. J. Chem. Phys. 1987, 87, 6687.
10 Narita N. ; Nagai S. ; Suzuki S. ; Nakao K. Phys. Rev. B 1998, 58, 11009.
11 Malko D. ; Neiss C. ; Viñes F. ; Görling A. Phys. Rev. Lett. 2012, 108, 086804.
12 Kondo M. ; Nozaki D. ; Tachibana M. ; Yumura T. ; Yoshizawa K. Chem. Phys. 2005, 312, 289.
13 Singh N. B. ; Bhattacharya B. ; Sarkar U. Struct. Chem. 2014, 25, 1695.
14 Koo J. ; Huang B. ; Lee H. ; Kim G. ; Nam J. ; Kwon Y. ; Lee H. J. Phys. Chem. C 2014, 118, 2463.
15 Shayeganfar F. J. Phys. Chem. C 2015, 119, 12681.
16 Deb J. ; Bhattacharya B. ; Sarkar U. J. Phys.: Conf. Ser. 2016, 759, 012038.
17 Bhattacharya B. ; Sarkar U. J. Phys. Chem. C 2016, 120, 26793.
18 Kang J. ; Li J. ; Wu F. ; Li S.-S. ; Xia J. -B. J. Phys. Chem. C 2011, 115, 20466.
19 Bhattacharya B. ; Singh N. B. ; Sarkar U. Int. J. Quantum Chem 2015, 115, 820.
20 Pan J. ; Du S. ; Zhang Y. ; Pan L. ; Zhang Y. ; Gao H. ; Pantelides S. T. Phys. Rev. B 2015, 92, 205429.
21 Li C. ; Li J. ; Wu F. ; Li S.-S. ; Xia J.-B. ; Wang L. -W. J. Phys. Chem. C 2011, 115, 23221.
22 Guo Y. ; Jiang K. ; Xu B. ; Xia Y. ; Yin J. ; Liu Z. J. Phys. Chem. C 2012, 116, 13837.
23 Hwang H. J. ; Koo J. ; Park M. ; Park N. ; Kwon Y. ; Lee H. J. Phys. Chem. C 2013, 117, 691.
24 Deb J. ; Paul D. ; Sarkar U. AIP Conf. Proc. 2017, 1832, 050106.
25 Baheshtian J. ; Peyghan A. A. ; Bagheri Z. ; Tabar M. B. Struct. Chem. 2014, 25, 1.
26 Deb J. ; Bhattacharya B. ; Sarkar U. AIP Conf. Proc. 2016, 1731, 050081.
27 Omidvar A. ; Mohajeri A. Mol. Phys. 2015, 113, 3900.
28 Deb J. ; Bhattacharya B. ; Paul D. ; Sarkar U. Phys. E 2016, 84, 330.
29 Srinivasu K. ; Ghosh S. K. J. Phys. Chem. C 2012, 116, 5951.
30 Bhattacharya B. ; Sarkar U. ; Seriani N. J. Phys. Chem. C 2016, 120, 26579.
31 Chattaraj P. K. ; Sarkar U. Int. J. Quantum Chem. 2003, 91, 633.
32 Chattaraj P. K. ; Sarkar U. ; Parthasarathi R. ; Subramanian V. Int. J. Quantum Chem. 2005, 101, 690.
33 Chattaraj P. K. ; Sarkar U. Comp. Theor. Chem 2007, 19, 269.
34 Sarkar U. ; Khatua M. ; Chattaraj P. K. Phys. Chem. Chem. Phys. 2012, 14, 1716.
35 Sarkar U. ; Giri S. ; Chattaraj P. K. J. Phys. Chem. A 2009, 113, 10759.
36 Khatua M. ; Sarkar U. ; Chattaraj P. K. Eur. Phys. J. D 2014, 68, 1.
37 Chattaraj P. K. ; Khatua M. ; Sarkar U. Int. J. Quantum Chem. 2015, 115, 144.
38 Deb J. ; Bhattacharya B. ; Singh N. B. ; Sarkar U. Struct. Chem. 2016, 27, 1221.
39 Peyghan A. A. ; Rastegar S. F. ; Hadipour N. L. Phys. Lett. A 2014, 378, 2184.
40 Majidi R. ; Karami A. R. Phys. E 2014, 59, 169.
41 Shekar S. C. ; Swathi R. S. J. Phys. Chem. C 2014, 118, 4516.
42 Ordejón P. ; Artacho E. ; Soler J. M. Phys. Rev. B 1996, 53, R10441.
43 Soler J. M. ; Artacho E. ; Gale J. D. ; García A. ; Junquera J. ; Ordejón P. ; Portal D. S. J. Phys. Condens. Matter 2002, 14, 2745.
44 Perdew J.P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
45 Troullier N. ; Martins J. Solid State Commun 1990, 74, 613.
46 Grimme S. J. Comput. Chem. 2006, 27, 1787.
47 Parr R. G. ; Chattaraj P. K. J. Am. Chem. Soc. 1991, 113, 1854.
48 Ghara M. ; Pan S. ; Deb J. ; Kumar A. ; Sarkar U. ; Chattaraj P. K. J. Chem. Sci. 2016, 10, 15378.
[1] Yuxing GU,Juan YANG,Dihua WANG. Electrochemical Features of Carbon Prepared by Molten Salt Electro-Reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[3] Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087.
[4] Julia CONTRERAS-GARCíA,Weitao YANG. Perspective: Chemical Information Encoded in Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 567-580.
[5] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[6] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[7] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[8] Xiaoqin DING,Junjie DING,Dayu LI,Li PAN,Chengxin PEI. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322.
[9] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[10] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[11] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[12] Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1116-1123.
[13] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[14] Yun-Peng GUO,Jie FENG,Wen-Ying LI. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1796-1802.
[15] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.