Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (6): 631-638    DOI: 10.3866/PKU.WHXB201710201
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes
Carlos CÁRDENAS1,2,*(),Macarena MUÑOZ1,3,Julia CONTRERAS4,Paul W. AYERS5,Tatiana GÓMEZ6,Patricio FUENTEALBA1,2,*
1 Departamento de Fısica, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago, Chile
2 Centro para el Desarrollo de la Nanociencias y Nanotecnologia, CEDENNA, Avenida Ecuador 3493, Santiago, Chile
3 Núcleo de Matemáticas, Física y Estadística, Facultad de Ciencias, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile
4 Sorbonne Universités, UPMC and CNRS, Laboratoire de Chimie Théorique (LCT), 75005 Paris, France
5 Department of Chemistry & Chemical Biology; McMaster University; Hamilton, L8S 4M1 Ontario, Canada
6 Institute of Applied Chemical Sciences, Theoretical and Computational Chemistry Center, Universidad Autónoma de Chile, El Llano Subercaceaux 2801, San Miguel, Santiago, Chile
Download: HTML     PDF(1663KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Chemical reactivity towards electron transfer is captured by the Fukui function. However, this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states. In such a case, the first-order chemical response is not independent of the perturbation and the correct response has to be computed using the mathematical formalism of perturbation theory for degenerate states. Spatial pseudo-degeneracy is ubiquitous in nanostructures with high symmetry and totally extended systems. Given the size of these systems, using degenerate-state perturbation theory is impractical because it requires the calculation of many excited states. Here we present an alternative to compute the chemical response of extended systems using models of local softness in terms of the local density of states. The local softness is approximately equal to the density of states at the Fermi level. However, such approximation leaves out the contribution of inner states. In order to include and weight the contribution of the states around the Fermi level, a model inspired by the long-range behavior of the local softness is presented. Single wall capped carbon nanotubes (SWCCNT) illustrate the limitation of the frontier orbital theory in extended systems. Thus, we have used a C360 SWCCNT to test the proposed model and how it compares with available models based on the local density of states. Interestingly, a simple Hückel approximation captures the main features of chemical response of these systems. Our results suggest that density-of-states models of the softness along simple tight binding Hamiltonians could be used to explore the chemical reactivity of more complex system, such a surfaces and nanoparticles.



Key wordsLocal softness      Fukui function      Reactivity      Carbon nanotubes      Density of states     
Received: 30 August 2017      Published: 20 October 2017
Fund:  This work has been supported by FONDECYT grants 1140313 and 11150164. CC and PF acknowledge support by Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and project RC-130006 CILIS, granted by the Fondo de Innovación para la Competitividad del Ministerio de Economía, Fomento y Turismo de Chile. MM acknowledge supports by CONICYT through grant 21130691. PWA acknowledges support from NSERC, Compute Canada, and the Canada Research Chairs
Corresponding Authors: Carlos CÁRDENAS,Patricio FUENTEALBA     E-mail: cardena@macul.ciencias.uchile.cl
Cite this article:

Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201710201     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/631

 
 
 
 
 
 
 
1 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules ; Oxford UP: New York, NY, USA, 1989.
2 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
3 Chermette H. J. Comput. Chem. 1999, 20, 129.
4 Liu S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
5 Gazquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
6 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101, 520.
7 Chattaraj P. K. ; Sarkar U. ; Roy D. R. Chem. Rev. 2006, 106, 2065.
8 Johnson P. A. ; Bartolotti L. J. ; Ayers P. W. ; Fievez T. ; Geerlings P. Modern Charge-Density Analysis Springer: The Netherlands, 2012, 715.
9 Parr R. G. ; Yang W. T. J. Am. Chem. Soc. 1984, 106, 4049.
10 Yang W. T. ; Parr R. G. ; Pucci R. J. Chem. Phys. 1984, 81, 2862.
11 Yang W. T. ; Parr R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.
12 Fukui K. Science 1982, 218, 747.
13 Ayers P. W. ; Levy M. Theo. Chem. Acc. 2000, 103, 353.
14 Fuentealba P. ; Cardenas C. ; Pino-Rios R. ; Tiznado W. Applications of Topological Methods in Molecular Chemistry Springer International Publishing: Switzerland, 2016, 277.
15 Ayers P. W. ; Yang W. T. ; Bartolotti L. J. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed. CRC Press: Boca Raton, FL, USA, 2009, 255.
16 Perdew J. P. ; Parr R. G. ; Levy M. ; Balduz J. L., Jr Phys. Rev. Lett. 1982, 49, 1691.
17 Chan G. K. L. J. Chem. Phys. 1999, 110, 4710.
18 Yang W. T. ; Zhang Y. K. ; Ayers P. W. Phys. Rev. Lett. 2000, 84, 5172.
19 Cohen M. H. ; Wasserman A. Isr. J. Chem. 2003, 43, 219.
20 Ayers P. W. J. Math. Chem. 2008, 43, 285.
21 Cohen A. J. ; Mori-Sanchez P. ; Yang W. T. Science 2008, 321, 792.
22 Parr R. G. ; Donnelly R. A. ; Levy M. ; Palke W. E. J. Chem. Phys. 1978, 68, 3801.
23 Nalewajski R. F. ; Kozlowski P. M. Acta Phys. Polon. 1986, A70, 457.
24 Cárdenas C. ; Heidar-Zadeh F. ; Ayers P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721.
25 Sablon N. ; De Proft F. ; Ayers P. W. ; Geerlings P. J. Chem. Phys. 2007, 126, 224108.
26 Fievez T. ; Sablon N. ; De Proft F. ; Ayers P. W. ; Geerlings P. J. Chem. Theory Comput. 2008, 4, 1065.
27 Fuentealba P. ; Chamorro E. ; Cárdenas C. Int. J. Quantum Chem. 2007, 107, 37.
28 Bartolotti L. J. ; Ayers P. W. J. Phys. Chem. A 2005, 109, 1146.
29 Echegaray E. ; Rabi S. ; Cardenas C. ; Zadeh F. H. ; Rabi N. ; Lee S. ; Anderson J. S. ; Toro-Labbe A. ; Ayers P. W. J. Mol. Model. 2014, 20, 1.
30 Cardenas C. ; Ayers P. W. ; Cedillo A. J. Chem. Phys. 2011, 134, 174103.
31 Bultinck P. ; Cardenas C. ; Fuentealba P. ; Johnson P. A. ; Ayers P. W. J. Chem. Theory Comput. 2013, 10, 202.
32 Bultinck P. ; Cardenas C. ; Fuentealba P. ; Johnson P. A. ; Ayers P. W. J. Chem. Theory Comput. 2013, 9, 4779.
33 Bultinck P. ; Jayatilaka D. ; Cardenas C. Comput. Theor. Chem. 2015, 1053, 106.
34 Avouris P. Accounts Chem. Res. 2002, 35, 1026.
35 Fowler P. W. ; Manopoulos D. E. An Atlas of Fullerene Oxford Press University: Oxford, UK, 1995.
36 Banerjee S. ; Hemraj-Benny T. ; Wong S. S. Adv. Mater. 2005, 17, 17.
37 Fowler P. W. Contemp. Phys. 1996, 37, 235.
38 Prodan E. ; Kohn W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635.
39 Prodan E. Phys. Rev. B 2006, 73, 085108.
40 Cardenas C. ; Rabi N. ; Ayers P. W. ; Morell C. ; Jaramillo P. ; Fuentealba P. J. Phys. Chem. A 2009, 113, 8660.
41 Flores-Moreno R. J. Chem. Theory Comput. 2009, 6, 48.
42 Martínez J. Chem. Phys. Lett. 2009, 478, 310.
43 Pino-Rios R. ; Ya ez O. ; Inostroza D. ; Ruiz L. ; Cardenas C. ; Fuentealba P. ; Tiznado W. J. Comput. Chem. 2017, 38, 481.
44 Berkowitz M. ; Parr R. G. J. Chem. Phys. 1988, 88, 2554.
45 Cohen M. H. ; Ganduglia-Pirovano M. V. J. Chem. Phys. 1994, 101, 8988.
46 Cohen M. H. ; Ganduglia-Pirovano M. V. ; Kudrnovsky J. J. Chem. Phys. 1995, 103, 3543.
47 Cohen M. H. ; Ganduglia-Pirovano M. V. ; Kudrnovsky J. Phys. Rev. Lett. 1994, 72, 3222.
48 Cohen M. H. Top. Curr. Chem. Density Functional Theory Ⅳ; Springer-Verlag, Berlin, Germany 1996, 183.
49 Santos J. C. ; Contreras R. ; Chamorro E. ; Fuentealba P. J. Chem. Phys. 2002, 116, 4311.
50 Alzate-Morales J. H. ; Tiznado W. ; Santos J. C. ; Cardenas C. ; Contreras R. J. Phys. Chem. B 2007, 111, 3293.
51 Santos J. C. ; Chamorro E. ; Contreras R. ; Fuentealba P. Chem. Phys. Lett. 2004, 383, 612.
52 Brommer K. D. ; Galván M. ; Dal Pino A. ; Joannopoulos J. D. Surf. Sci. 1994, 314, 57.
53 Nguyen L. T. ; De Proft F. ; Amat M. C. ; Van Lier G. ; Fowler P. W. ; Geerlings P. J. Phys. Chem. A 2003, 107, 6837.
54 Cardenas C. ; De Proft F. ; Chamorro E. ; Fuentealba P. ; Geerlings P. J. Chem. Phys. 2008, 128, 034708.
55 Morrell M. M. ; Parr R. G. ; Levy M. J. Chem. Phys. 1975, 62, 549.
56 Katriel J. ; Davidson E. R. Proc. Natl. Acad. Sci. USA 1980, 77, 4403.
57 Hoffmann-Ostenhof M. ; Hoffmann-Ostenhof T. Phys. Rev. A 1977, 16, 1782.
58 Ahlrichs R. ; Hoffmann-Ostenhof M. ; Hoffmann-Ostenhof T. ; Morgan J. D. Ⅲ. Phys. Rev. A 1981, 23, 2106.
59 Levy M. ; Perdew J. P. ; Sahni V. Phys. Rev. A 1984, 30, 2745.
60 Handy N. C. ; Marron M. T. ; Silverstone H. J. Phys. Rev. 1969, 180, 45.
61 Yang W. T. ; Mortier W. J. J. Am. Chem. Soc. 1986, 108, 5708.
62 Mulliken R. S. J. Chem. Phys. 1955, 23, 1833.
[1] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[2] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[3] Donghai. YU,Chunying. RONG,Tian. LU,Frank. DE PROFT,Shubin. LIU. Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 639-649.
[4] Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 497-502.
[5] Zunwei ZHU,Qiaofeng YANG,Zhenzhen XU,Dongxia ZHAO,Hongjun FAN,Zhongzhi YANG. Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 519-527.
[6] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[7] Xiaoqin DING,Junjie DING,Dayu LI,Li PAN,Chengxin PEI. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322.
[8] Manas GHARA,Pratim K. CHATTARAJ. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 201-207.
[9] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 81-91.
[10] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[11] Jiao LI,Zhong CHEN. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 941-948.
[12] Xiao-Qing LU,Zi-Gang ZHAO,Ke LI,Shu-Xian WEI,Yuan-Yuan QU,Yong-Qiang NIU,Xue-Feng LIU. First-Principles Investigation of the Structural and Photoelectronic Properties of CH3NH3PbxSn1-xI3 Mixed Perovskites[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1439-1445.
[13] Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1175-1182.
[14] Shu-Bin LIU. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 98-118.
[15] Jie. ZHANG,Mei-Ling. DOU,Feng. WANG,Jing-Jun. LIU,Zhi-Lin. LI,Jing. JI,Ye. SONG. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1727-1732.