Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (10): 1097-1105    DOI: 10.3866/PKU.WHXB201712131
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond
Tian LIU1,Jun LI1,*(),Weijia LIU2,Yudan ZHU1,*(),Xiaohua LU1
1 College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu Province, P. R. China
2 Nanjing Boiler and Pressure Vessel Inspection Institute, Nanjing 210019, Jiangsu Province, P. R. China
Download: HTML     PDF(1633KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The development of efficient catalysts for the hydrogenation of CO2 to formic acid (FA) or formate has attracted significant interest as it can address the increasingly severe energy crisis and environmental problems. One of the most efficient methods to transform CO2 to FA is catalytic homogeneous hydrogenation using noble metal catalysts based on Ir, Ru, and Rh. In our previous work, we demonstrated that the activity of CO2 hydrogenation via direct addition of hydride to CO2 on Ir(Ⅲ) and Ru(Ⅱ) complexes was determined by the nature of the metal-hydride bond. These complexes could react with the highly stable CO2 molecule because they contain the same distinct metal-hydride bond formed from the mixing of the sd2 hybrid orbital of metal with the 1s orbital of H, and evidently, this property can be influenced by the trans ligand. Since boryl ligands exhibit a strong trans influence, we proposed that introducing such ligands may enhance the activity of the Ru―H bond by weakening it as a result of the trans influence. In this work, we designed two potential catalysts, namely, Ru-PNP-HBcat and Ru-PNP-HBpin, which were based on the Ru(PNP)(CO)H2 (PNP = 2, 6-bis(dialkylphosphinomethyl)pyridine) complex, and computationally investigated their reactivity toward CO2 hydrogenation. Bcat and Bpin (cat = catecholate, pin = pinacolate) are among the most popular boryl ligands in transition metal boryl complexes and have been widely applied in catalytic reactions. Our optimization results revealed that the complexes modified by boryl ligands possessed a longer Ru―H bond. Similarly, natural bond orbital (NBO) charge analysis indicated that the nucleophilic character of the hydride in Ru-PNP-HBcat and Ru-PNP-HBpin was higher as compared to that in Ru-PNP-H2. NBO analysis of the nature of Ru―H bond indicated that these complexes also followed the law of the bonding of Ru―H bond proved in the previous works (Bull. Chem. Soc. Jpn. 2011, 84 (10), 1039; Bull. Chem. Soc. Jpn. 2016, 89 (8), 905), and the d orbital contribution of the Ru atom in Ru-PNP-HBcat and Ru-PNP-HBpin was smaller than that in Ru-PNP-H2. Consequently, the Ru-PNP-HBcat and Ru-PNP-HBpin complexes were more active than Ru-PNP-H2 for the direct hydride addition to CO2 because of the lower activation energy barrier, i.e., from 29.3 kJ∙mol-1 down to 24.7 and 23.4 kJ∙mol-1, respectively. In order to further verify our proposed catalyst-design strategy for CO2 hydrogenation, the free energy barriers of the complete pathway for the hydrogenation of CO2 to formate catalyzed by complexes Ru-PNP-H2, Ru-PNP-HBcat, and Ru-PNP-HBpin were calculated to be 76.2, 67.8, and 54.4 kJ∙mol-1, respectively, indicating the highest activity of Ru-PNP-HBpin. Thus, the reactivity of Ru catalysts for CO2 hydrogenation could be tailored by the strong trans influence of the boryl ligands and the nature of the Ru―H bond.



Key wordsCO2 hydrogenation      Ru complex      Boryl ligand      Trans influence      Ru―H bond     
Received: 15 November 2017      Published: 13 April 2018
MSC2000:  O643  
Fund:  National Key Basic Research Development Program of China (973)(2013CB733505);National Key Basic Research Development Program of China (973)(2013CB733501);National Natural Science Foundation of China(91334202);Natural Science Foundation of Jiangsu Province(BK2012421);Research Fund for the Doctoral Program of Higher Education of China(20123221120015);Project for Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
Corresponding Authors: Jun LI,Yudan ZHU     E-mail: lijun@njtech.edu.cn;ydzhu@njtech.edu.cn
Cite this article:

Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201712131     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1097

 
Ru-H1/nm Ru-H2 or Ru-B/nm H1-Ru-H2 or H1-Ru-B/(°) P1-P2-O1-O2/(°)
Ru-PNP-H2 0.1697 0.1697 175.7 ?
Ru-PNP-HBcat 0.1714 0.2140 176.0 62.0
Ru-PNP-HBpin 0.1716 0.2170 177.7 35.2
 
Trans ligand NBO charge/e Stretching frequency of Ru―H bond/cm?1 WBI of Ru―H bond
Ru H1 H2/BX CO PNP
H? ?0.552 ?0.245 ?0.245 0.113 0.930 1853 0.8620
Bcat? ?0.607 ?0.270 ?0.278 0.148 1.007 1658 0.8372
Bpin? ?0.598 ?0.276 ?0.236 0.132 0.978 1644 0.8370
 
Trans ligand Ru―H bond distance/nm Coefficients/hybrids of Ru―H bond orbital Ea/(kJ·mol?1)
H? 0.1697 0.706Ru(sd2.11) + 0.709H(s) 29.3
Bcat? 0.1714 0.702Ru(sd1.83) + 0.712H(s) 24.7
Bpin? 0.1716 0.699Ru(sd1.80) + 0.715H(s) 23.4
 
 
 
 
Trans ligand 1 TS1-2 2
∠O―C―O C…H Ru…H ∠O―C―O C…H Ru…H ∠O―C―O C…H Ru…H
H? 176.8 0.2629 0.1695 153.1 0.1680 0.1748 138.0 0.1280 0.1857
Bcat? 176.8 0.2690 0.1714 153.0 0.1654 0.1763 137.3 0.1266 0.1901
Bpin? 176.5 0.2674 0.1717 154.7 0.1752 0.1766 136.3 0.1252 0.1931
 
1 Wang W. H. ; Hull J. F. ; Muckerman J. T. ; Fujita E. ; Himeda Y. Energy Environ. Sci. 2012, 5 (7), 7923.
2 Machan C. W. ; Sampson M. D. ; Kubiak C. P. J. Am. Chem. Soc. 2015, 137 (26), 8564.
3 Clark M. L. ; Grice K. A. ; Moore C. E. ; Rheingold A. L. ; Kubiak C. P. Chem. Sci. 2014, 5 (5), 1894.
4 Ziebart C. ; Federsel C. ; Anbarasan P. ; Jackstell R. ; Baumann W. ; Spannenberg A. ; Beller M. J. Am. Chem. Soc. 2012, 134 (51), 20701.
5 Federsel C. ; Jackstell R. ; Beller M. Angew. Chem. Int. Ed. 2010, 49 (36), 6254.
6 Evans G. O. ; Newell C. J. Inorg. Chim. Acta 1978, 31 (1), L387.
7 Cokoja M. ; Bruckmeier C. ; Rieger B. ; Herrmann W. A. ; Kühn F. E. Angew. Chem. Int. Ed. 2011, 50 (37), 8510.
8 Wang W. H. ; Ertem M. Z. ; Xu S. ; Onishi N. ; Manaka Y. ; Suna Y. ; Kambayashi H. ; Muckerman J. T. ; Fujita E. ; Himeda Y. ACS Catal. 2015, 5 (9), 5496.
9 Behr A. ; Nowakowski K. Advances in Inorganic Chemistry San Diego, CA, USA: Aresta M..., Eldik R. V..., Eds.; Elsevier Academic Press, 2014, Vol. 66, pp. 223- 258.
10 Liu C. ; Xie J. H. ; Tian G. L. ; Li W. ; Zhou Q. L. Chem. Sci. 2015, 6 (5), 2928.
11 Lilio A. M. ; Reineke M. H. ; Moore C. E. ; Rheingold A. L. ; Takase M. K. ; Kubiak C. P. J. Am. Chem. Soc. 2015, 137 (25), 8251.
12 Gunanathan C. ; Milstein D. Accounts Chem. Res. 2011, 44 (8), 588.
13 Ohnishi Y. Y. ; Nakao Y. ; Sato H. ; Sakaki S. Organometallics 2006, 25 (14), 3352.
14 Tanaka R. ; Yamashita M. ; Nozaki K. J. Am. Chem. Soc. 2009, 131 (40), 14168.
15 Filonenko G. A. ; Putten R. ; Schulpen E. N. ; Hensen E. J. M. ; Pidko E. A. ChemCatChem 2014, 6 (6), 1526.
16 Munshi P. ; Main A. D. ; Linehan J. C. ; Tai C. C. ; Jessop P. G. J. Am. Chem. Soc. 2002, 124 (27), 7963.
17 Filonenko G. A. ; Hensen E. J. M. ; Pidko E. A. Catal. Sci. Technol. 2014, 4 (10), 3474.
18 Li J. ; Yoshizawa K. Bull. Chem. Soc. Jpn. 2011, 84 (10), 1039.
19 Li J. ; Liu S. ; Lu X. Bull. Chem. Soc. Jpn. 2016, 89 (8), 905.
20 Zhu J. ; Lin Z. Y. ; Marder T. B. Inorg. Chem. 2005, 44 (25), 9384.
21 Schmeier T. J. ; Dobereiner G. E. ; Crabtree R. H. ; Hazari N. J. Am. Chem. Soc. 2011, 133 (24), 9274.
22 Langer R. ; Leitus G. ; Ben-David Y. ; Milstein D. Angew. Chem. Int. Ed. 2011, 50 (9), 2120.
23 Braunschweig H. ; Kollann C. ; Rais D. Angew. Chem. Int. Ed. 2006, 45 (32), 5254.
24 Aldridge S. ; Coombs D. L. Coord. Chem. Rev. 2004, 248 (7-8), 535.
25 Lin T. P. ; Peters J. C. J. Am. Chem. Soc. 2014, 136 (39), 13672.
26 Segawa Y. ; Yamashita M. ; Nozaki K. J. Am. Chem. Soc. 2009, 131 (26), 9201.
27 Lin T. P. ; Peters J. C. J. Am. Chem. Soc. 2013, 135 (41), 15310.
28 Lin T. P. ; Peters J. C. J. Am. Chem. Soc. 2014, 136 (39), 13672.
29 Kallane S. I. ; Braun T. ; Teltewskoi M. ; Braun B. ; Herrmann R. ; Laubenstein R. Chem. Commun. 2015, 51 (78), 14613.
30 Braunschweig H. ; Brenner P. ; Dewhurst R. D. ; Guethlein F. ; Jimenez-Halla J. O. C. ; Radacki K. ; Wolf J. ; Zollner L. Chem. -Eur. J. 2012, 18 (28), 8605.
31 Lim X. Nature 2015, 526, 628.
32 Feller M. ; Gellrich U. ; Anaby A. ; Diskin-Posner Y. ; Milstein D. J. Am. Chem. Soc. 2016, 138 (20), 6445.
33 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ; et al Gaussian 09, Revision A.02 Wallingford, CT, USA: Gaussian Inc., 2009.
34 Becke A. D. Phys. Rev. A 1988, 38 (6), 3098.
35 Xia G. J. ; Liu J. W. ; Liu Z. F. Dalton Trans. 2016, 45 (43), 17329.
36 Miyada T. ; Yamashita M. Organometallics 2013, 32 (19), 5281.
37 Martin J. M. L. ; Sundermann A. J. Chem. Phys. 2001, 114 (8), 3408.
38 Dunning T. H. J. Chem. Phys. 1989, 90 (2), 1007.
39 Li J. ; Shiota Y. ; Yoshizawa K. J. Am. Chem. Soc. 2009, 131 (38), 13584.
40 Mosquera M. E. G. ; Gomez-Sal P. ; Diaz I. ; Aguirre L. M. ; Ienco A. ; Manca G. ; Mealli C. Inorg. Chem. 2016, 55 (1), 283.
41 Grayson M. N. ; Krische M. J. ; Houk K. N. J. Am. Chem. Soc. 2015, 137 (27), 8838.
42 Mazzone G. ; Alberto M. E. ; Sicilia E. J. Mol. Model. 2014, 20 (5), 2249.
43 Filonenko G. A. ; Conley M. P. ; Copéret C. ; Lutz M. ; Hensen E. J. M. ; Pidko E. A. ACS Catal. 2013, 3 (11), 2522.
44 Khaskin E. ; Iron M. A. ; Shimon L. J. W. ; Zhang J. ; Milstein D. J. Am. Chem. Soc. 2010, 132 (25), 8542.
45 Zhang J. ; Leitus G. ; Ben-David Y. ; Milstein D. J. Am. Chem. Soc. 2005, 127 (31), 10840.
46 Glendening E. D. ; Badenhoop J. K. ; Reed A. E. ; Carpenter J. E. ; Bohmann J. A. ; Morales C. M. ; Weinhold F. NBO 5.9; Theoretical Chemistry Institute Madison, WI, USA: University of Wisconsin, 2009.
47 Braunschweig H. ; Brenner P. ; Muller A. ; Radacki K. ; Rais D. ; Uttinger K. Chem. -Eur. J. 2007, 13 (25), 7171.
48 Rawat K. S. ; Mahata A. ; Choudhuri I. ; Pathak B. J. Phys. Chem. C 2016, 120 (30), 16478.
49 Osadchuk I. ; Tamm T. ; Ahlquist M. S. G. Organometallics 2015, 34 (20), 4932.
50 Tanaka R. ; Yamashita M. ; Chung L. W. ; Morokuma K. ; Nozaki K. Organometallics 2011, 30 (24), 6742.
51 Zhang P. ; Ni S. F. ; Dang L. Chem. -Asian J. 2016, 11 (18), 2528.
[1] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[2] GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-Han . Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO2 to Methanol[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1155-1162.
[3] GUO Xiao-Ming, MAO Dong-Sen, LU Guan-Zhong, WANG Song. Preparation of CuO-ZnO-ZrO2 by Citric Acid Combustion Method and Its Catalytic Property for Methanol Synthesis from CO2 Hydrogenation[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 170-176.
[4] ZHANG Jian-Po, JIN Li, ZHANG Hong-Xing. Structures and Spectroscopic Properties of [Ru(iph)(L)2]2+ (L=cpy, mpy, npy) Complexes Containing Tetradentate Ligands[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1089-1094.