Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (6): 692-698    DOI: 10.3866/PKU.WHXB201801121
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis
Ulises OROZCO-VALENCIA1,L. GÁZQUEZ José2,Alberto VELA1,*()
1 Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, Ciudad de México, 07360, México
2 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México, 09340, México
Download: HTML     PDF(611KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A global and local charge transfer partitioning model, based on the cornerstone theory developed by Robert G. Parr and Robert G. Pearson, which introduces two charge transfer channels (one for accepting electrons (electrophilic) and another for donating (nucleophilic)), is applied to the reaction of a set of indoles with 4, 6-dinitrobenzofuroxan. The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles, i.e., the indoles under consideration transfer electrons to 4, 6-dinitrobenzofuroxan. Evaluating the reactivity descriptors with exchange-correlation functionals including exact exchange (global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals; however, the trends are preserved. Comparing the trend obtained with the number of electrons donated by the indoles, and predicted by the partitioning model, with that observed experimentally based on the measured rate constants, we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4, 6-dinitrobenzofuroxan. This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species; therefore, it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting. The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions, and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve, reaching an optimal correlation, which in the present case indicates keeping three atoms from the indoles and two from 4, 6-dinitrobenzofuroxan. The atoms selected by this procedure provide valuable information about the local reactivity of the indoles. We further show that this information about the most reactive atoms on each reactant, combined with the spatial distribution of the nucleophilic and electrophilic Fukui functions of both reactants, allows one to propose non-trivial candidates of starting geometries for the search of the transition state structures present in these reactions.



Key wordsChemical reactivity      Conceptual DFT      Charge transfer      Nucleophilicity      Indoles, Transition state prediction     
Received: 24 November 2017      Published: 12 January 2018
Corresponding Authors: Alberto VELA     E-mail: avela@cinvestav.mx
Cite this article:

Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis. Acta Physico-Chimica Sinca, 2018, 34(6): 692-698.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201801121     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/692

 
―X IA AA μA ηA NA NAele NAnuc lnk
―NH2 6.8 -1.5 -2.7 8.3 -0.218 0.141 -0.359 5.46
―OH 7.3 -1.4 -3.0 8.7 -0.195 0.153 -0.347 3.50
―MeO 7.2 -1.4 -2.9 8.6 -0.200 0.150 -0.350 3.04
―Me 7.4 -1.4 -3.0 8.8 -0.190 0.155 -0.345 2.37
―H 7.5 -1.4 -3.1 8.9 -0.183 0.158 -0.342 0.83
―Cl 7.7 -1.0 -3.4 8.7 -0.167 0.166 -0.334 -1.61
―CO2H 7.8 -0.6 -3.6 8.4 -0.154 0.173 -0.327 -2.75
―CN 8.1 -0.5 -3.8 8.5 -0.140 0.180 -0.320 -5.65
IB AB μB ηA
DNBF 9.3 2.6 -5.9 6.7
 
 
―X IA AA μA ηA NA NAele NAnuc Lnk
―NH2 7.3 -1.6 -2.8 8.9 -0.214 0.143 -0.357 5.46
―OH 7.8 -1.5 -3.1 9.3 -0.191 0.154 -0.346 3.50
―MeO 7.7 -1.5 -3.1 9.2 -0.197 0.151 -0.349 3.04
―Me 7.9 -1.6 -3.1 9.4 -0.190 0.155 -0.345 2.37
―H 8.0 -1.6 -3.2 9.5 -0.185 0.158 -0.342 0.83
―Cl 8.2 -1.1 -3.6 9.3 -0.165 0.167 -0.333 -1.61
―CO2H 8.3 -0.8 -3.7 9.1 -0.158 0.171 -0.329 -2.75
―CN 8.6 -0.7 -4.0 9.2 -0.142 0.179 -0.321 -5.65
IB AB μB ηB
DNBF 9.8 2.7 -6.3 7.1
 
 
―X 1 2 3 4 5 6 7
―NH2 a 0.129 c 0.094 e 0.078 g 0.076 i 0.067 b 0.066 f 0.059
-OH a 0.105 c 0.104 e 0.099 g 0.087 i 0.076 b 0.073 f 0.065
-MeO a 0.094 c 0.094 e 0.086 g 0.082 b 0.069 i 0.068 f 0.059
-Me e 0.119 c 0.098 i 0.088 f 0.086 g 0.084 J 0.066 b 0.059
-H e 0.123 f 0.099 c 0.097 i 0.091 J 0.085 g 0.079 b 0.066
-Cl a 0.161 e 0.112 c 0.094 g 0.085 i 0.080 f 0.074 b 0.056
-CO2 e 0.120 f 0.098 i 0.087 c 0.083 J 0.079 g 0.075 a 0.050
-CN e 0.117 a 0.114 c 0.088 f 0.083 i 0.082 g 0.081 J 0.062
DNBF d 0.103 c 0.085 a 0.079 g 0.078 f 0.075 b 0.073 e 0.071
 
b a
1 2 3 4 5 6 7
1 0.60 0.88 0.94 0.96 0.97 0.97 0.97
2 0.49 0.81 0.90 0.94 0.96 0.97 0.97
3 0.45 0.76 0.86 0.91 0.94 0.96 0.96
4 0.42 0.73 0.83 0.89 0.92 0.95 0.95
5 0.40 0.71 0.81 0.87 0.91 0.93 0.94
6 0.39 0.70 0.79 0.85 0.89 0.92 0.93
7 0.38 0.68 0.78 0.84 0.88 0.91 0.92
 
 
 
1 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules, Revised ed.; Oxford University Press: New York, NY, USA 1994.
2 Chermette H. J. Comput. Chem. 1999, 20, 129.
3 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
4 Gázquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
5 Liu S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
6 Chattaraj P. K. ; Sarkar U. ; Roy D. R. Chem. Rev. 2006, 106, 2065.
7 Chattaraj P. K. ; Roy D. R. Chem. Rev. 2007, 107, PR46.
8 Chattaraj P. K. ; Giri S. ; Duley S. Chem. Rev. 2011, 111, PR43.
9 Pearson R. G. Coord. Chem. Rev. 1990, 100, 403.
10 Parr R. G. ; Pearson R. G. J. Am. Chem. Soc. 1983, 105, 7512.
11 Pearson R. G. Inorg. Chem. 1988, 27, 734.
12 Pearson R. G. J. Org. Chem. 1989, 54, 1423.
13 Anslyn E. V. ; Dougherty D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA 2005.
14 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101, 520.
15 Roos G. ; Geerlings P. ; Messens J. J. Phys. Chem. B 2009, 113, 13465.
16 Orozco-Valencia A. U. ; Gazquez J. L. ; Vela A. J. Phys. Chem. A 2017, 121, 4019.
17 Orozco-Valencia U. ; Gazquez J. L. ; Vela A. J. Mol. Model. 2017, 23, 207.
18 Lakhdar S. ; Westermaier M. ; Terrier F. ; Goumont R. ; Boubaker T. ; Ofial A. R. ; Mayr H. J. Org. Chem. 2006, 71, 9088.
19 Parr R. G. ; Yang W. T. J. Am. Chem. Soc. 1984, 106, 4049.
20 Berkowitz M. J. Am. Chem. Soc. 1987, 109, 4823.
21 Yang W. ; Mortier W. J. J. Am. Chem. Soc. 1986, 108, 5708.
22 Fuentealba P. ; Perez P. ; Contreras R. J. Chem. Phys. 2000, 113, 2544.
23 Ayers P. W. ; Morrison R. C. ; Roy R. K. J. Chem. Phys. 2002, 116, 8731.
24 Bultinck P. ; Fias S. ; Van Alsenoy C. ; Ayers P. W. ; Carbo-Dorca R. J. Chem. Phys. 2007, 127, 034102.
25 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Petersson G. A. ; Nakatsuji H. ; et al Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA 2009.
26 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
27 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1997, 78, 1396.
28 Hirshfeld F. L. Theor. Chim. Acta 1977, 44, 129.
29 Humphrey W. ; Dalke A. ; Schulten K. J. Mol. Graphics Modell. 1996, 14, 33.
30 Zhao Y. ; Truhlar D. G. Theor. Chem. Acc. 2008, 120, 215.
31 Terrier F. ; Pouet M. J. ; Halle J. C. ; Hunt S. ; Jones J. R. ; Buncel E. J. Chem. Soc., Perkin Trans. 2 1993, 1665
32 Domingo L. R. ; Perez P. Org. Biomol. Chem. 2011, 9, 7168.
[1] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 683-391.
[2] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 699-707.
[3] Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.
[4] Yi WANG,Nan-Fang JIA,Sheng-Li QI,Guo-Feng TIAN,De-Zhen WU. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2227-2236.
[5] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.
[6] Bo-Cai CHEN,Yang SHEN,Jian-Hong WEI,Rui XIONG,Jing SHI. Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1371-1382.
[7] Xue-Sen LIU,Dan LEI,Li-Hua GAN. Structures and Properties of Endohedral Metallofullerene Sc2S@C86[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 929-934.
[8] Shu-Bin LIU. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 98-118.
[9] Lin YANG,Yang LI,Shu CHEN,Jing ZHANG,Min ZHANG,Peng WANG. Ultrafast Spectroscopic Studies of Excited State Relaxation and Electron Injection in Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 329-336.
[10] Bin. HUANG,Yu. DAI,Xin-Xin. BAN,Wei. JIANG,Zhao-Hang. ZHANG,Kai-Yong. SUN,Bao-Ping. LIN,Yue-Ming. SUN. ThermallycFluorescence Materials Based on Triphenylamine/Diphenyl Sulfone[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1621-1628.
[11] REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1215-1218.
[12] LI Xiao-Jin, SHENG Jia-Yi, CHEN Hai-Hang, XU Yi-Ming. Improved Photocatalytic Degradation of Phenol over β-Bi2O3 Modified Bi2WO6 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 540-544.
[13] ZHU Chang-Li, WANG Wen-Yong, TIAN Dong-Mei, WANG Jiao, QIU Yong-Qing. Second-Order Nonlinear Optical Properties of Bis-Cyclometalated Iridium(Ⅲ) Isocyanide Complexes[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 245-252.
[14] Wen-Jing. YANG,Yu-Jin. ZHANG,Chuan-Kui. WANG. Optical Properties and Responsive Mechanism of 4-Amino-1, 8-Naphthalimide-Based Two-Photon Fluorescent Probe for Sensing Hydrogen Sulfide[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2303-2309.
[15] Li-Zhen. YAO,De-Sheng. KONG,Jiu-Yao. DU,Ze. WANG,Jing-Wei. ZHANG,Na. WANG,Wen-Juan. LI,Yuan-Yuan. FENG. Enhancement of the Photoelectrochemical Activity of α-Fe2O3 Materials by Surface Modification with Vanadium[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1895-1904.